Il Tredicesimo Cavaliere

Scienze dello Spazio e altre storie

Storie nelle rocce (reblog)

Nella sua versione in lingua inglese, l’articolo che segue non solo ha fatto la gioia dei geologi e dei planetologi, ma ha raccolto anche parecchio interesse tra il pubblico non specializzato. E’ stato scritto da Barbara Cohen e tradotto in italiano, con molta cura,  da Simonetta Ercoli e Donatella Levi. E’ stato pubblicato sul Tredicesimo Cavaliere proprio nei caldissimi giorni a ridosso del Ferragosto, col risultato di passare inosservato alla maggioranza dei nostri lettori. Lo riproponiamo qui ora come un gesto di scusa nei confronti dell’autore e dei traduttori e ci auguriamo che questa volta l’articolo riesca a raggiungere l’intero suo pubblico. (RF)

La storia di un pianeta è raccontata attraverso le sue rocce. Ogni roccia che si forma memorizza il suo ambiente: la dimensione dei granuli di un sedimento ci dicono da quanto lontano le particelle sono state trasportate; le tracce degli elementi nelle rocce ignee quale era la provenienza del magma; la composizione mineralogica di una roccia metamorfica quale intensità di pressione ha subito. Una roccia ci mostra se una zona era umida o secca; se i fluidi percolati attraverso di essa erano caldi o freddi e se la superficie era stata alterata da fratture da impatto o corrugamenti tettonici.

Rocce1

foto 1. L’immagine è una sezione sottile di Dhofar 025, una meteorite lunare con vescicole da fusione da impatto. È stata scattata utilizzando gli elettroni retrodiffusi in microscopio a scansione elettronica. Qui i grigi medi e scuri indicano gli elementi più leggeri che costituiscono le rocce e i minerali tipici, mentre il bianco brillante sta ad indicare elementi più pesanti, come i metalli, e le aree nere sono fori o spazi vuoti. L’inserto è uno zoom su un clasto da fusione da impatto in questa meteorite – un pezzetto di una sola roccia formata da molti cristalli di minerali che si sono accresciuti, avendo fuso e ricristallizzato in un impatto sulla Luna.

Ogni roccia è una pagina nel libro della storia di un pianeta: la geocronologia è ciò che mette in ordine le pagine. Studia l’età le rocce e quando esse sono state modificate dagli eventi geologici. Noi conosciamo le condizioni in cui le rocce si formano grazie agli strumenti presenti sui nostri rover, quali Opportunity e Curiosity, e sugli orbiter come l’Orbiter Lunar Reconnaissance, Messenger e Cassini. La geocronologia è una misurazione aggiuntiva, che mette quelle condizioni in un contesto temporale: ci aiuta a ordinare cronologicamente gli eventi planetari e a collegarli ad altri verificatisi nel Sistema Solare.

Per esempio, che cosa stava accadendo sulla Terra quando su Marte il clima cambiava da caldo e umido al suo inospitale stato attuale? Quando hanno colpito Marte e la Luna gli impatti degli asteroidi? La geocronologia può dirci anche quanto a lungo è durato un evento. Per quanto tempo, ad esempio, i diversi pianeti hanno avuto un calore interno sufficiente a regolare i sistemi magmatici? E quanto tempo hanno avuto gli organismi per crescere in un ambiente marziano caldo e umido? Quanto a lungo le superfici sono state esposte all’ambiente dello spazio e forse trasformate da esso?

rocce2

foto 2. Questa sezione sottile ingrandita (QUE 94200) è una howardite, un esempio della regolite di Vesta. Proviene da un gruppo di meteoriti collegate a Vesta chiamate HED (howardite, eucrite, diogenite). Questo campione contiene piccoli pezzi di materiale fuso da impatto dei crateri di Vesta. Tuttavia, dal momento che non conosciamo esattamente in quale punto dell’asteroide si siano formati queste meteoriti, non possiamo ancora collegare l’età assoluta dei campioni all’elenco dei crateri sulla sua superficie.

 

 

Campioni in laboratorio

Io mi descrivo come una persona campione. Amo mettere le mani sulle rocce degli altri pianeti – campioni lunari dell’Apollo, meteoriti dalle diverse parti del mondo – aprirli e analizzarli per scoprire come e dove si sono formati. Ho iniziato ad imparare diverse tecniche di laboratorio mentre ero una studentessa specializzanda in geologia all’università statale di New York a Stoney Brook, uno dei primi posti in cui sono stati analizzati i campioni riportati dalla missione Apollo negli anni ‘70. Quando ero iscritta alla facoltà dell’Università dell’Arizona per approfondire le scienze planetarie, sviluppai un progetto usando la geocronologia per datare piccolissime vescicole di fusione da impatto, che si erano conservate nelle meteoriti lunari. Tutti i campioni riportati dalle missioni Apollo, che si sono formati in ampi impatti sulla Luna, hanno stranamente un’età simile, circa 4 miliardi di anni, che alcuni addetti ai lavori hanno iniziato a spiegare con l’incremento dei bombardamenti subiti dalla Luna in quel periodo: bombardamenti ai quali la Terra non poteva essere sfuggita. Quando stavo preparando la mia tesi, pensavo che avrei trovato di sicuro rocce da fusione da impatto più vecchie e avrei risolto il mistero. In realtà, non trovai nulla di più vecchio di 4 miliardi di anni in nessuno dei miei campioni. Era più difficile di quanto pensassi. 

rocce5foto 5. La stratigrafia si usa per comprendere l’età relativa delle rocce. Come mostrato dagli strati differentemente colorati del Gran Canyon, le rocce più giovani sono sovrapposte a quelle più antiche. Per conoscere la loro età assoluta è necessario analizzarle in laboratorio.

Quando non abbiamo campioni da scegliere in laboratorio, come possiamo stabilire quanto è vecchio un pianeta? Usiamo la datazione relativa. Gli elementi rocciosi più vecchi si trovano al di sotto di quelli più giovani: questo è il principio della stratigrafia, che si può vedere in luoghi come il Gran Canyon. Quando si hanno solo immagini orbitali, è più difficile vedere gli strati sovrapposti gli uni sugli altri, ma possiamo ricorrere a formazioni, quali le colate di lava e i crateri da impatto, per distinguere le aeree più recenti da quelle più antiche. I crateri da impatto, infatti, sono molto utili perché, fin dal pesante bombardamento di quattro miliardi di anni fa, sembrano formarsi ad un ritmo costante. Questo significa che il numero dei crateri sulla superficie può essere collegato alla sua età, come lasciare un pezzo di carta fuori appena comincia a piovere. Ma come possiamo dire quanti crateri corrispondono a quale età? Abbiamo bisogno di un punto di collegamento o di un’età assoluta. Sulla Luna gli astronauti dell’Apollo hanno raccolto campioni dalle zone vicine ai flussi di lava. Li abbiamo datati per dare loro un’età, poi abbiamo contato i crateri sulla superficie delle colate di lava e creato una scala temporale calibrata della Luna. Ora potremmo contare i crateri presenti sulle parti della Luna che non sono state esplorate, e utilizzare le loro relazioni, determinate con i campioni Apollo, per dedurre l’età della superficie. E ancora, possiamo usare questa calibratura per estendere il conteggio dei crateri ad altri pianeti come Marte per stimare l’età della superficie del pianeta, sebbene ci siano molte imprecisioni quando si usa questo metodo.

 rocce3

foto 3. questa fila di crateri da impatto, fotografata da Dawn, è una delle più suggestive formazioni sul grande asteroide Vesta. Questi ed altri impatti su Vesta hanno fatto ribollire la sua superficie, creando la regolite.

 

 

 

 

 

Campionatura in situ

Nel 2004 facevo parte di una commissione che consigliò la NASA su cosa sarebbe importante fare per la scienza lunare quando l’uomo tornerà sulla Luna. “Il contesto scientifico per l’esplorazione della Luna” era il titolo del nostro report. La commissione concordò nel ritenere che l’antico bombardamento della Luna – il periodo in cui gli enormi bacini lunari, quali Imbrium e Orientale, si formarono – era un’enorme questione in sospeso con implicazioni importanti per l’intero Sistema Solare. Noi sostenevamo l’importanza della raccolta di più campioni presi da diversi luoghi sulla Luna, non solo dalle vicinanze delle aree visitate dalle missioni Apollo: abbiamo bisogno di campioni prelevati da molti siti. Per esempio, il ritorno di campioni da Marte è un obiettivo di vecchia data della comunità scientifica che si occupa dei pianeti. Le meteoriti cadute sulla Terra ci raccontano quando i loro corpi di origine si sono formati ed evoluti, ma dove sono i loro corpi di origine? È necessario ottenere anche campioni di molti asteroidi. E quando si sono formate la liscia superficie di Venere leggermente craterizzata e la crosta povera di ferro di Mercurio? Riportare campioni da tutti questi posti? Chiaramente, non è possibile. Ma ho imparato un altro approccio alla campionatura, quando Paul Lucey, il mio collega di studi di scienze lunari e membro della commissione, mi pose delle domande riguardo a una geocronologia in situ, vale a dire spostare il nostro laboratorio nello spazio, invece di portare indietro i campioni. Io ridicolizzai l’idea. Gli risposi che servono camere pulite per la preparazione e manipolazione dei campioni, al fine di garantire la sensibilità degli strumenti, che occupano una metà della stanza, per un calcolo dell’età preciso fino a milioni di anni in minuscoli granelli di campioni vecchi miliardi di anni.

rocce4

foto 4. la maggior parte degli scienziati concorda nel ritenere ALH84001 la più antica meteorite di Marte mai rinvenuta. Questo pezzo del pianeta rosso cristallizzò 4,51 miliardi di anni fa. Mezzo miliardo di anni dopo è stato colpito da un forte evento di impatto. Noi non sappiamo dove si fosse originata la meteorite su Marte così non possiamo collegare la sua età ad uno dei crateri marziani.

Paul scosse la testa con disappunto e disse: “Veramente? Non riesci a pensare ad una sola domanda tra tutte quelle della scienza planetaria che possa richiedere un’età leggermente meno precisa?” Mi soffermai a pensare. Bene, noi non conosciamo l’età degli altopiani marziani all’interno di circa un mezzo miliardo di anni, che è un raggio ampio. Se potessimo restringere quello spazio fino a 100 milioni di anni, sarebbe sufficiente per legarlo alla storia lunare. I giovani basalti lunari, i crateri chiave sulla Luna, Marte e Vesta, l’età magmatica di asteroidi differenziati potrebbero essere tutti studi orientati ad un primo approccio con un’idea come questa.

Tempo e decadimento

I nostri metodi di datazione assoluta si basano sul decadimento radioattivo. Ogni elemento della tavola periodica ha un determinato numero di protoni ed elettroni, che lo identificano: per esempio, il carbonio ha sei protoni e sei elettroni. Tutti gli atomi hanno anche neutroni nei loro nuclei e questi possono variare di numero. Atomi che hanno lo stesso numero di protoni ma differente numero di neutroni sono detti isotopi tra loro. Così un atomo di carbonio con sei neutroni è 12C e uno con sette neutroni è 13C. Molti elementi hanno isotopi radioattivi naturali, in essi gli atomi madre decadono con il tempo in atomi figli più stabili. Questo tempo di decadimento è ormai noto, così conoscendo l’atomo di partenza e quello di arrivo, è possibile definire per quanto tempo il sistema è stato in decadimento o per le rocce il tempo per la loro formazione. Io uso un sistema radioattivo basato sul potassio (K) che decade ad argon (Ar). Il potassio è un elemento presente naturalmente nella vita di ogni giorno, ad esempio si trova nelle banane e nel granito. In realtà un numero veramente esiguo di atomi di potassio ha un numero extra di neutroni ed è quindi radioattivo. Quando esso si trova in un minerale o in una roccia, fa parte del loro reticolo, quindi possiamo valutare il potassio di partenza e l’argon di arrivo per conoscere in quanto tempo quest’ultimo si è formato, ovvero l’età della roccia. Con un’emi-vita di 1,29 miliardi di anni il sistema potassio-argon è un valido metodo per l’analisi delle rocce del sistema solare ed è stato utilizzato sia per le rocce lunari e le meteoriti che per le rocce terrestri.

 

rocce6

foto 6. il Mare della Serenità è uno dei mari lunari, vaste pianure di lava sulla superficie della Luna. Questa una ripresa della Stazione 6, dove gli astronauti dell’Apollo 17 hanno esplorato un gruppo di massi e regolite, fatta dalla camera del Lunar Reconnaissance Orbiter (LROC). Cinque ampi frammenti di roccia giacciono alla base di un lungo cordolo di massi. Provengono tutti da un singolo masso che è rotolato giù dal rilievo e si è frammentato in più parti.

 

 

L’esperimento laser potassio-argon

Il mio consulente di laurea è stato Tim Swindle, il quale provò per primo a sviluppare un sistema potassio-argon da utilizzare in un volo strumentale. Tim chiamò il suo metodo Argon Geochronology Experiment (AGE) e lo destinò a volare su una missione verso Marte. AGE utilizzava un laser (come il Chemcam su Curiosity) per misurare il potassio in piccoli campioni, poi lo fondeva in forno a 1.500 °C (2.730 Fahreneit) per liberare l’argon intrappolato. Io ero una collaboratrice nei programmi di Tim. In una conversazione con lui ad un convegno nel 2008 presso l’Ames Research Center della NASA, riflettei che l’alta energia del laser poteva rompere il reticolo cristallino e produrre argon libero senza il bisogno di un forno. Chiesi a Tim se gli sarebbe interessato provare questo metodo ma, spiegandomi che egli era al termine della concessione del suo progetto e stava prendendo altre responsabilità, suggerì che io tentassi da sola. Ci scambiammo i ruoli e io iniziai a sviluppare il Potassio Laser Experiment (KArLE) con Tim come collaboratore. Dato che sono una scienziata e non una tecnologa, ho progettato KArLE seguendo il criterio di adoperare strumenti che già esistono per le missioni sulle superfici planetarie, utilizzandoli per condurre un nuovo tipo di rilevazione: l’età delle rocce. KArLE usa uno strumento come il Chemcam sia per ablare un campione di roccia sia per misurare il potassio nel plasma, utilizzando la spettroscopia di ripartizione indotta da laser (LIBS). Come la roccia si rompe, noi misuriamo l’argon liberato con la spettrometria di massa, allo stesso modo in cui viene fatto in alcune missioni quali Curiosity, LADEE e Cassini. Abbiamo avuto circa tre anni di tempo per sviluppare una versione KArLE da laboratorio e testarla in analoghi campioni planetari con risultati incoraggianti, dal momento che abbiamo ottenuto datazioni accurate con circa solo un 10 – 15 percento di imprecisione: un livello di precisione ottimo per rispondere a molte domande sollevate dalla scienza planetaria. Possiamo fare buone misurazioni di potassio e argon, ma ogni datazione è l’interpretazione di un evento geologico, così ogni componente KArLE contribuisce a rendere la misurazione contestuale per interpretare l’età del campione. Per esempio la tessitura della superficie di una roccia è caratterizzata con un dispositivo elettronico (imager), LIBS produce un’analisi completa degli elementi della roccia e tutti i gas liberati possono essere misurati. Pensavo di essere stata piuttosto in gamba a riconvertire questi componenti e il loro uso verso la geocronologia. Ma una buona idea a volte sta solo aspettando di essere pensata e così, del tutto indipendentemente, anche altri due gruppi, in Germania e in Francia, stavano sviluppando questa tecnica quasi contemporaneamente a noi. Fortunatamente negli ultimi anni siamo arrivati a considerarci come persone che collaborano fra loro, lavorando tutte verso un obiettivo comune.

rocce7

foto 7. pezzi di colata di lava tratti dal Mare della Serenità sono stati riportati sulla Terra e datati nei laboratori, dove una datazione assoluta per la formazione lavica è stata valutata tra 3,7 e 3,8 miliardi di anni. Questo è un pezzo del basalto riportato dall’Apollo 17 che ha fornito questa età, collegandola al conteggio dei crateri dalla foto 6.

Opportunità per la datazione in situ

La capacità degli strumenti di volo di condurre la geocronologia in situ è ritenuta dalle pubblicazioni della NASA Planetary Science Decadal Survey e Technology Roadmap come uno sviluppo necessario per soddisfare i bisogni della comunità. Beagle 2, il lander esobiologico per l’orbiter Mars Express dell’ESA, è la sola missione lanciata con l’esplicito obiettivo di effettuare in situ la datazione K-Ar delle rocce. Sfortunatamente il lander Beagle 2 ha mancato la comunicazione al suo primo atteso contatto radio e questo obiettivo scientifico non è stato così soddisfatto. La prima datazione K-Ar in situ su Marte è stata pubblicata di recente, utilizzando misurazioni SAM e APXS su rocce Cumberland mudstone. L’età di 4,21 miliardi di anni (+-0,35) per Cumberland suggerisce che essa è di età molto antica e valida l’ipotesi dell’uso del sistema potassio-argon per la datazione sugli altri pianeti, anche se il metodo Curiosity è molto impreciso. Per ottenere maggior precisione e datazioni più significative, molti gruppi stanno perfezionando strumenti destinati alla datazione in situ. L’ultima opportunità per uno strumento di tale tipo è avvenuta lo scorso anno, quando il carico di Mars 2020 è stato completato. Quattro strumenti potassio-argon per la datazione in situ e altri schemi di datazione radioattiva sono stati proposti, tra cui KArLE. Benché nessuno abbia vinto un posto sul rover Mars 2020, la datazione in situ potrebbe presto divenire una realtà.

Ci sono molte domande relative alla scienza planetaria che ancora richiedono la determinazione di misurazioni di laboratorio e necessitano di campioni da riportare indietro sulla Terra. La datazione in situ non sostituisce il lavoro sui campioni riportati, ma piuttosto estende la nostra capacità di usarla come uno strumento, insieme ai nostri strumenti di imaging. Vorrei che diventasse uno strumento comune da poter utilizzare sulla Luna, su Marte, sugli asteroidi e oltre. Non sarebbe romantico avere un appuntamento in tutti quei posti?

traduzione: SIMONETTA ERCOLI

editing: DONATELLA LEVI

Titolo originale: “Stories in Stone” di Barbara Cohen , pubblicato su The Planetary Report vol35 #1-2015

Annunci

2 ottobre 2015 Posted by | Planetologia, Scienze dello Spazio | , , | Lascia un commento

eso6. Esopianeti, una sfilata di stranezze spaziali

Prima di tutto facciamo un aggiornamento del numero dei pianeti extra-solari individuati, che tende a cambiare nel tempo, grazie a nuove scoperte, osservazioni, e così via. Al 9 aprile 2015, risultavano localizzati oltre 1900 pianeti extra-solari. Le ultime statistiche davano 1953 pianeti in 1210 sistemi. Di questi, 480 sono sistemi planetari multipli come il nostro. Se avete voglia di stare al passo con loro, mettete un segnalibro alla pagina exoplanet.eu/catalog, che si può consultare anche per categoria o utilizzando le caratteristiche planetarie. Dopo aver navigato nel database utilizzando le più importanti chiavi di lettura (vedi eso1-5) in questo articolo presenteremo alcuni corpi celesti decisamente bizzarri.

Strani corpi celesti

Avevo menzionato il pianeta di diamante nell’articolo precedente come valida introduzione a questa galleria. Ora che solo caratteristiche non comuni sono state incluse nell’articolo di oggi, il posto in galleria è confermato. Inoltre ho trovato un breve video su questo pianeta eccezionale, che includo qui.

La faccenda si fa tanto più pazza quanto più si consulta il database per valori anomali. Prendiamo per esempio il già noto HAT-P-1, che altri non è se non Il Pianeta Vaporoso, per ottimi motivi. La sua massa è pari a metà di quella di Giove, ma è 1,76 volte più grande, più ancora di quanto previsto dalla nostra attuale teoria sulla formazione dei pianeti.

Pianeti inclinati e altre bizzarrie

Altrettanto intrigante è anche la varietà dei cosidetti pianeti “inclinati”. Inclinati cioè non solo rispetto ai loro assi, come Urano, ma anche rispetto all’equatore della loro stella di riferimento, come XO-3b, la cui inclinazione è di circa 37 gradi. Qualcosa di così insolito è stato fino ad oggi rilevato solo con Plutone, ritenuto dai ricercatori non più un pianeta, lo sappiamo, ma la missione New Horizons potrebbe cambiare anche questo. Sono state formulate delle teorie per spiegare come questo sia accaduto, date un’occhiata qui per maggiori informazioni.

Un’altra stranezza è quando un pianeta ruota così vicino alla sua stella d’origine che il suo moto orbitale – un anno terrestre in paragone – è più rapido di un giorno sulla Terra. Impossibile? Figuriamoci. Distante solo 3.400.000 km. dal suo sole, un anno su SWEEPS-10 dura 10 ore. E questo pianeta non è un caso isolato, anzi appartiene ad una categoria di mondi nota come “zippy planets”, o se volete “ultra short period planets” (USPPs) tutti con periodo orbitale pari a meno di un giorno terrestre.

I pianeti “tipo Star Wars”, luoghi di fantasia descritti nei film e nei racconti di fantascienza, e fino ad oggi ritenuti tali, cioè pura fantascienza, sono stati anch’essi trovati, e non solo pianeti parte di sistemi doppi o tripli o perfino multipli (per adesso il massimo che abbiamo trovato è uno stupefacente sistema quadruplo); sembra che esistano anche mondi la cui superficie è completamente ricoperta d’acqua, come GJ1214b, un pianeta tre volte la Terra, dotato di atmosfera (dato confermato).

 

 

eso6 planet-eaten-away

Il caso del pianeta divorato

E che dire di un mondo in bilico sul bordo di un tragico epilogo? L’attrazione gravitazionale del suo sole sarebbe infine capace di inghiottirlo. E’ il caso di WASP-18, che i ricercatori tengono attualmente sotto stretto controllo per rilevare qualsiasi cambiamento nei dati orbitali che confermi, o smentisca, il suo destino. Anche peggio il fato annunciato per WASP-12b, sulla strada di essere letteralmente “divorato” sotto i nostri occhi. Conosciuto anche per essere il più caldo pianeta della Via Lattea, questo sfortunato corpo celeste è in procinto di essere spogliato della sua materia, come lo Spettrografo delle Origini Cosmiche (COS), strumento con cui è equipaggiato il telescopio spaziale Hubble, ha recentemente rivelato. Come è spiegato sul sito della NASA, la sua storia è affascinante: “Il pianeta è così vicino alla sua stella (simile al sole) che viene surriscaldato fino a temperature altissime, e praticamente “sdraiato” sulla sua orbita fino ad assumere la forma di una palla da rugby, a causa delle enormi forze di marea a cui è soggetto. L’atmosfera è aumentata a dismisura fino a 3 volte il raggio di Giove, e sta facendo fuoriuscire materiale in direzione della stella. Il pianeta è del 40% più grande di Giove. Questo effetto di scambio di materia tra due corpi celesti di natura stellare si vede comunemente nei sistemi binari, specie quelli ravvicinati, ma è la prima volta che il fenomeno è stato osservato così chiaramente per un pianeta. Si vede una grande nube di materiale intorno al pianeta, che sta tentando di allontanarsi, ma sarà invece catturata dalla stella. Abbiamo anche identificato elementi chimici mai visti prima su pianeti extra-solari”. In base alle valutazioni della NASA, WASP-12b esisterà ancora per altri 10 milioni di anni, più che abbastanza per qualche bella foto.

 

di  STEPHEN P. BIANCHINI

traduzione ed editing di ROBERTO FLAIBANI e DONATELLA LEVI

Pubblicato per la prima volta da The Earthian Hivemind il 16 aprile 2015

Titolo originale: Exoplanet series – strange creatures

Credits: NASA, JPL, CalTech, ESA, Hubble

31 agosto 2015 Posted by | Astrofisica, Astronautica, Scienze dello Spazio | , , | Lascia un commento

eso5. Massa e dimensioni planetarie influiscono nell’ospitare la vita

Grazie a Stephen Bianchini, autore del presente articolo, dei precedenti quattro e dei prossimi tre (otto in tutto) avremo coperto, anche se un po’ sommariamente, un settore importantissimo, quello sui pianeti extrasolari. Dopo aver esaminato quattro importanti caratteristiche utili per classificare gli esopianeti, e cioè abitabilità, età, distanza e temperatura, questo articolo è dedicato alla massa e alle dimensioni. (RF)

eso5-a_moon-size_line_up1Nell’aprile 2014, la scoperta di un pianeta di dimensioni paragonabili alla Terra nella zona di abitabilità della sua stella ha provocato un sacco di entusiasmo nella comunità scientifica. Per ottimi motivi: oltre a trovarsi nella zona abitabile, con tutte le conseguenze del caso, la dimensione è l’altra variabile che viene subito a mente quando si pensa a un pianeta che potrebbe ospitare la vita. Una massa scarsa provoca una insufficiente attrazione gravitazionale, e quindi niente atmosfera. Se capitasse il contrario, probabilmente registreremmo l’accumulo di grosse quantità di idrogeno ed elio, come nei giganti gassosi Giove e Saturno, cioè un ambiente non proprio accogliente per la vita come noi la conosciamo. Ma i pianeti di dimensioni simili alla Terra, sebbene siano risultati più numerosi di quanto ci si aspettasse, sono in realtà solo una frazione di quanti ne esistono realmente, mentre alcuni presentano dimensioni così estreme da farci dubitare se possano essere considerati o meno degli esopianeti.

 

eso5-kepler-37b-exoplanet-illustration

Cominciamo dai più piccoli

Partendo dal fondo della lista, ci sono alcuni “più piccoli”; basandosi sui criteri che ispirano questa selezione, in termini assoluti di massa il titolo di pianeta più piccolo  sembra appartenere a un mondo roccioso chiamato Kepler-37b (nell’immagine artistica qui a sinistra), che ha un raggio di poco superiore a quello della Luna ed è leggermente più piccolo di Mercurio (ma più vicino al Sole. La sua pazzesca temperatura è di circa 400°C.)

 

 eso5509304main_kepler_rocky_planet_fullPrima che Kepler-37b fosse localizzato nel 2013, il titolo era detenuto da Kepler-10b (nell’illustrazione qui a sinistra) appena 1,4 volte più grande della Terra. Scoperto nel 2011, è stato anche il primo esopianeta roccioso confermato da Kepler utilizzando i dati raccolti tra il maggio 2009 e l’inizio di gennaio del 2010.

 

 

140924135020-large

 HAT-P-11b, (nell’illustrazione qui a fianco) recentemente scoperto, vanta circa le dimensioni del nostro gigante di ghiaccio Nettuno, quindi rapidamente etichettato come Eso-Nettuno. Si trova a 120 anni luce di distanza nella costellazione del Cigno ma, a differenza del suo pianeta di riferimento (Nettuno) orbita molto più vicino alla sua stella madre. 

L’altra estremità della gamma 

Esistono mondi enormi. Tuttavia, qui il problema è quando un esopianeta smette di essere tale e diventa una nana bruna, vale a dire una stella mancata. Dopo tutto, le nane brune sono molto vicine ai giganti gassosi in quanto a composizione. Tant’è che il pianeta più massiccio registrato nell’archivio NASA, DENIS-P J082303.1-491201 b, con circa 30 volte la massa di Giove, probabilmente è qualificabile più come una nana bruna. CT Cha, citato nella lista del Laboratorio di Abitabilità Planetaria, con il massimo raggio e con circa 17 volte la massa di Giove, è un altro esempio.

eso5-070806_big_exoplanet_02Un caso interessante di pianeta massiccio è TrES-4, un pianeta davvero strano (immagine a sinistra). Perché? Perché è enorme in termini di dimensioni (70% più grande di Giove), ma meno denso, e sfida tutte le teorie correnti sui pianeti giganti surriscaldati. Si trova nella costellazione di Ercole, e orbita intorno a una stella che è più grande e più calda del Sole ma solo 10 volte più grande del pianeta stesso. Tutti questi fattori fanno sì che una piccola frazione della sua atmosfera esterna riesca a sfuggire al pozzo gravitazionale del pianeta e formi una specie di coda di cometa intorno al pianeta. Strano davvero.

TrES-4 e la sua minore densità sono un promemoria per segnalare che questa variabile è rilevante anche nella classificazione esopianeti. E se consideriamo la densità (cioè il rapporto tra massa e volume) ci accorgiamo facilmente che nel Sistema Solare i giganti gassosi variano molto da questo punto di vista… con Saturno che dovrebbe galleggiare su un ipotetico oceano, essendo meno denso dell’acqua stessa (tecnicamente parlando, però, questo non succede).

eso5-081006-exo-02Uno dei più densi esopianeti conosciuti fino ad oggi è un remoto corpo celeste chiamato COROT-exo-3b.(immagine a sinistra) Fa circa le dimensioni di Giove, ma più di 20 volte la sua massa, il che lo rende due volte più denso del piombo. Un altro buon candidato per il nostro catalogo delle nane brune.

Per quanto compatto possa essere, COROT-exo-3b non è nemmeno lontanamente denso come PSR J1719-1438 b, quest’ultimo senza alcun dubbio tra gli oggetti più fantastici mai rilevati in questa categoria. Conosciuto anche come il “pianeta pulsar”, ha una massa che è quasi la stessa di Giove, ma solo il 40% delle dimensioni di quest’ultimo. È uno strano mondo, largamente composto di carbonio cristallino, ma con una densità molto maggiore del diamante. È così: un pianeta enorme fatto di diamante.

 

di  STEPHEN P. BIANCHINI

traduzione ed editing di ROBERTO FLAIBANI e DONATELLA LEVI

Pubblicato per la prima volta da The Earthian Hivemind il 25 novembre 2014

Titolo originale: Does size matter for life? Giant and tiny exoplanets

Credits: NASA, JPL, CalTech, ESA, Hubble

29 agosto 2015 Posted by | Astrofisica, Astronautica, Planetologia, Scienze dello Spazio | , , | 1 commento

eso4 – supercaldo o ultrafreddo?

Eccoci infine al quarto e conclusivo episodio del nostro piccolo esperimento ferragostano. Se qualcuno fosse interessato a conoscerne i risultati, può segnalarcelo nei commenti. Le pubblicazioni riprenderanno lunedì prossimo con un articolo del nostro Mongai  su due novità cinematografiche interessanti: Ant Man e Ex Machina (RF)

Fra le variabili sin qui considerate, l’abitabilità, l’età e la distanza dei pianeti sono state fin qui in primo piano. Questa volta parlerò di un altro fattore, la temperatura, soprattutto perché ha un impatto diretto sull’abitabilità. Ci sono alcuni pianeti freddi che abbiamo rilevato grazie a Kepler e altri telescopi, ma questo li batte tutti. Il suo nome è OGLE-2005-BLG-390L b (OGLE per gli amici): spero davvero che nella gara continua per la nomina degli esopianeti venga prodotto qualcosa di più fantasioso.

OGLE è stato scoperto nel 2005 dal telescopio danese dell’ESO (1,54m), situato a La Silla in Cile. La sua stella di riferimento è una nana rossa lontana 28mila anni luce, più vicina di noi al centro della Via Lattea. Il pianeta ha una massa pari a 5,5 volte quella della Terra. Una rivoluzione dura circa 10 anni, e si suppone che abbia una superficie rocciosa. Inoltre, con una temperatura in superficie di -220 gradi Celsius, è imbattuto come il più freddo mondo alieno scoperto fino ad oggi.

Ci sono altre cose che vale la pena segnalare a proposito di questo pianeta. Ad esempio, OGLE è solo il terzo pianeta extrasolare scoperto fino a oggi grazie alle ricerche di microlensing, dice Jean-Philipe-Beaulieu (Institut d’Astrophisique de Paris, France). “Mentre gli altri due pianeti scoperti in questo modo hanno massa pari ad alcune volte quella di Giove, la scoperta di un pianeta la cui massa è solo cinque volte quella della Terra (benché molto più difficile da rilevare di quelli più massicci) fa pensare che questi corpi celesti di massa più piccola siano molto comuni”.

È anche il caso di osservare che mentre la distanza dei pianeti dalla stella di riferimento ha una diretta relazione con la loro temperatura, cosa prevedibile, questo però non è sempre vero. Qualche volta i pianeti lontani sono relativamente “più caldi”. Questa non dovrebbe del tutto sorprendere, perché la temperatura è funzione di numerose variabili.

Volete un esempio che vi suoni familiare? Prendete il nostro Sistema Solare: l’atmosfera planetaria più fredda non appartiene a Nettuno, ma a Urano che si trova a circa 19,2 AU dal Sole, mentre Nettuno si trova a 30 AU. Con una temperatura minima di -216 °C oppure -224 °C, (le fonti di informazione differiscono su questo punto – qui sto citando NASA e BBC), Urano appare come il più freddo tra i mondi completamente sviluppati. Plutone è stato declassato qualche anno fa alla condizione di pianeta-nano, e quindi non lo abbiamo considerato in questa statistica.

Perché succede questo? Ci sono differenti teorie, una delle quali fa riferimento alla strana inclinazione del suo asse polare. Se ne fosse stato responsabile un impatto gigantesco avvenuto molto tempo fa, questo avrebbe anche potuto causare la fuoriuscita nello spazio di calore dall’interno del nocciolo. Inoltre Urano manca della interazione mareale che Nettuno ha con la sua luna Tritone, fenomeno che si traduce alla fine in calore. Tanto per chiarire, i pianeti non sono affatto gli oggetti più freddi dell’Universo. Il luogo più freddo mai trovato dagli astronomi è una nebulosa di spettrale bellezza, la Nebulosa Boomerang, che si trova a 5000 anni luce da noi, nella costellazione del Centauro. Con i suoi glaciali-272 °C, è perfino più fredda dello spazio circostante.

E cosa dire del contrario – del più caldo esopianeta finora conosciuto? È cognizione comune che anche in questo caso la distanza non è il solo fattore importante, e infatti Venere, grazie alla sua densa atmosfera, è più calda di Mercurio. Ma nello spazio profondo, questo record appartiene ad un pianeta chiamato WASP-12b, situato a 870 anni luce da noi. Con i suoi 2200 °C, una composizione gassosa di massa pari a una volta e mezza quella di Giove, e il doppio della sua stazza, è il pianeta più caldo mai scoperto.

Inoltre, con la durata di una sua rivoluzione pari a un solo giorno terrestre, e una distanza dalla sua stella di riferimento di poco più di 3 milioni di kilometri, è il pianeta dall’orbita più stretta mai trovato. Non è però destinato a rimanere così a lungo. Già, perché è così vicino alla sua stella di riferimento che le forze di marea che ne derivano stanno trasformando la sua forma in quella di un uovo, e disperdendo la sua atmosfera.

Mentre parliamo la sua stella se lo sta letteralmente cannibalizzando, e la NASA ha dato al povero pianeta soltanto una decina di milioni d’anni prima che sia divorato completamente. Ma lascerò le storie di horror galattico per un altro articolo

STEPHEN p BIANCHINI

traduzione di ROBERTO FLAIBANI  e DONATELLA LEVI

20 agosto 2015 Posted by | Astrofisica, Astronautica, Planetologia, Scienze dello Spazio, Volo Interstellare | , , | Lascia un commento

eso3 – Pianeti extrasolari fotogenici

Domani finisce il nostro breve test. I colonnini, intesi come metodo di lettura alternativo del blog, rimarranno di sicuro, mentre le modalità di presentazione saranno probabilmente rivoluzionate. Ma… tempo al tempo.(RF)

La distanza conta, non se ne discute. Ho già accennato all’importanza della Zona Abitabile, che ovviamente è in relazione con la distanza del pianeta dal suo sole. La Terra è un buon esempio di un pianeta né troppo vicino, né troppo lontano, che quindi gode di condizioni favorevoli alla vita. Nel caso del Sistema Solare abbiamo una certa varietà in termini di distanza dal Sole. È comunque sorprendente che queste non siano le distanze più estreme che possono esistere in un sistema solare anche supponendo che nel sistema ci sia un’unica stella.

eso3 tabella

Infatti se si trattasse di un sistema doppio (o multiplo) le cose potrebbero cambiare drasticamente. Circa un anno fa, dei ricercatori dell’Università di Montréal, conquistarono l’attenzione della stampa identificando un pianeta sorprendente, di massa pari a molte volte quella di Giove, lontano 2000 Unità Astronomiche (UA) dal suo sole. Tanto per farsi un’idea, 40 o 50 volte la distanza di Plutone dal Sole (sì, anche le distanze possono variare). Sorprendente, considerando che oggetti celesti così distanti sfidano tutte le teorie correnti sulla formazione dei pianeti. GU Psc b, tale è il nome di questa piccola meraviglia, è così lontana dalla stella da cui ha avuto origine, che il telescopio Gemini, a sua volta un’altra meraviglia, è stato in grado di fotografarla senza l’aiuto di alcuna ottica adattiva, e i lettori dovranno leggere l’intera storia per capire veramente quanto essa è sorprendente. Oppure credermi sulla parola.

Eccolo qui, un piccolo punto indipendente di luce infrarossa separato dalla sua stella. Ciò è fondamentale per una serie di ragioni, come per esempio mettere alla prova il modello computerizzato di meccanica della formazione dei pianeti, anche tenendo conto delle sue caratteristiche fisiche come massa e temperatura, di solito difficili o impossibili da valutare correttamente a causa della presenza della stella.

Passiamo invece alla situazione opposta. Qual è la distanza minima di un pianeta da una stella se vogliamo evitare che ne venga divorato? Non parliamo per metafore, accade davvero e ne abbiamo le prove. Ma di questo parleremo in un altro articolo. La domanda, invece, è una di quelle a cui al momento è impossibile rispondere: quanto più il pianeta è vicino alla stella, tanto più è difficile rilevarlo. Possiamo solo affidarci a teorie e modelli matematici – quegli stessi che GU Psc b ha gia’ dimostrato essere inaccurati, quando non completamente sbagliati. C’è invece un’altra domanda a cui possiamo rispondere: qual è l’esopianeta più vicino al Sistema Solare? In effetti abbiamo un ottimo candidato in Epsilon Eridani b, il quale orbita intorno a una graziosa stella simile al Sole ad appena 10,5 anni luce dalla Terra. La porta accanto, in termini astronomici, ma alla portata dei nostri telescopi. Chissà che un giorno o l’altro non ne avremo qualche buona fotografia.

STEPHEN p BIANCHINI

traduzione di ROBERTO FLAIBANI  e DONATELLA LEVI

19 agosto 2015 Posted by | Astrofisica, News, Planetologia, Scienze dello Spazio | , , | Lascia un commento

eso2 – Si faccia avanti Matusalemme

Il primo test, svoltosi ieri, ha avuto risultati interessanti e inattesi. La faccenda si complica. Ma è troppo presto per parlarne. Diamo inizio al secondo test, s’avanzi Matusalemme….

Nell’articolo precedente ho parlato dell’incredibile varietà degli esopianeti che abbiamo appena incominciato a scoprire. Ho anche menzionato cosa troviamo normalmente e cosa ci possiamo aspettare di trovare in accordo con l’astrofisica, inclusi gli obiettivi più desiderabili, per esempio i pianeti nella Zona Abitabile. D’ora in poi mi occuperò specificamente di questa categoria, e porterò come esempi alcune cose veramente strane … tutta roba buona per gli scenari di fantascienza. Il prescelto: Matusalemme, il pianeta più antico.

Si, ma quanto più antico? Per avere un’idea dell’età degli oggetti celesti è bene ricordare che l’anno zero, altrimenti noto come Big Bang, è avvenuto circa 13,78 GY fa (1 GY = un miliardo di anni), milione più milione meno, in accordo con il modello cosmologico standard Lambda-CDM. L’età della nostra galassia, la Via Lattea, è di 13,2 GY ma tra le stelle che la compongono ve ne sono alcune di gran lunga più giovani. Il Sistema Solare, per esempio, ha appena 4,60 GY, e tutti i pianeti, Terra compresa, 4,54 GY circa.

Si faccia avanti Matusalemme

Scoperto nel 1994, questo pianeta non va confuso con la stella HD140283 che ha lo stesso appellativo ma differente posizione, ed è noto tra gli astronomi come PSR B1620-26 b. Ha un’età stimata di 12,7 GY e una massa almeno doppia di quella di Giove. Questo gigante gassoso si trova a 5600 anni luce da noi, in un antico ammasso globulare nella costellazione dello Scorpione. Percorre la sua orbita in un sistema doppio formato da una nana bianca e una pulsar, e, considerata la sua età, ci sono forti possibilità che eventi stellari violenti come l’esplosione di una supernova, o altri, abbiano interessato la sua evoluzione. E’ difficile immaginare che una qualsiasi forma di vita possa essersi sviluppata in un simile ambiente. Scrittori di fantascienza: provateci!

Se il caso di Matusalemme vi ha messo in una buona predisposizione verso le anticaglie, potreste dare un’occhiata alla già menzionata, e recentemente scoperta HD140283, un apparente paradosso e di per se uno strano oggetto. Questo video è un buon punto di partenza:

Vi piacciono i più giovani, invece? Provate con LkCa 15 b, che a quanto si dice ha meno di un milione di anni. Su scala cosmica, appena un bambino

 STEPHEN p.BIANCHINI

traduzione di ROBERTO FLAIBANI

e DONATELLA LEVI

18 agosto 2015 Posted by | Astrofisica, Astronautica, News, Planetologia, Scienze dello Spazio | , , | Lascia un commento

eso1- I pianeti extrasolari, imparare le basi

planetspianetiextrasola

Nella settimana dopo Ferragosto il blog registra da sempre il più basso numero di visitatori, e noi ne approfittiamo per realizzare un esperimento. Il 20 luglio scorso  abbiamo proposto ai lettori,  con il lancio di un apposito pacchetto, quattro brevi articoli sui pianeti extrasolari, e un nuovo modo di leggere il Tredicesimo Cavaliere. La cosa ha avuto risultati contrastanti: il post di presentazione è stato accolto benissimo, non così  i quattro articoli. Forse ai nostri lettori non interessa la tematica dei pianeti extrasolari? Inverosimile. Noi riteniamo invece che  la nuova modalità di lettura non sia stata ben recepita, e siamo pronti, dopo lo svolgimento del test che inizia oggi, ad effettuare le opportune modifiche. Il test consiste semplicemente nella riproposizione degli articoli sopra citati, in formato post, per vedere se si verificano variazioni di rilievo nel comportamento dei lettori. (RF) 

Avevo già parlato qualche volta della sfida che l’arte della costruzione di mondi rappresenta nella FS, in termini di progettazione di sistemi planetari effettivamente funzionanti, sia se dotati di una stella singola o doppia. E la sfida si estende all’immaginare corpi celesti dove la vita sia almeno teoricamente possibile. Tuttavia fin dal 1991, quando è stato individuato il primo esopianeta, le notizie di nuove scoperte stanno diventando via via sempre più frequenti.

L’ultima volta che ho controllato i dati (maggio 2014) presso The Extrasolar Planets Encyclopaedia, erano citati 1106 sistemi planetari, 1786 pianeti e 460 sistemi planetari multipli. La gran parte dei dati proviene dal cacciatore di pianeti Kepler,  l’ormai famosissima missione della NASA. Grandi quantità di dati, di una stupefacente varietà in termini di caratteristiche fisiche, composizione chimica e moto. Ciò rende la vita di un attento scrittore di fantascienza molto più facile: dovrete solo guardarvi intorno e impadronirvi di qualche idea. Almeno sarete sicuri che il vostro pianeta potrà volteggiare nello spazio, seguendo una certa orbita senza implodere o disintegrarsi perché qualche elementare legge fisica era stata ignorata. 

Ma vediamo cosa abbiamo qui. Sapete che potete aspettarvi giganti gassosi tipo Giove, o ghiacciati tipo Nettuno, oppure qualche pianeta piccolo e roccioso (come la Terra, ndt).

eso1 - current-potential-habitable-exoplanets

Siete anche consapevoli del fatto che i pianeti nella Zona Abitabile   potrebbero probabilmente ospitare qualche forma di vita, e trovarsi intorno non ad una, ma a due stelle, data la relativa abbondanza di stelle doppie nell’Universo. Ma c’è ben di meglio: nello spazio profondo esistono cose talmente strane da superare tutta la creatività che potreste mettere in campo.

Prima di parlare delle creature più strane che si aggirano fuori, comincerò con quelle normali, per esempio quelle più simili alla Terra per forme e caratteristiche. Ci sono alcuni pianeti candidati per il titolo di “Gemello della Terra” , e L’Indice di Similarità terrestre (ESI) ne fornisce una buona misura sintetica.

Tenete buona nota che il sistema stellare Gliese581 ospita alcuni pianeti adatti. Uno di questi, Gliese 581 d, potrebbe essere il mondo alieno più potenzialmente abitabile conosciuto fino ad oggi. La sua massa è pari a 8 volte quella della Terra, è dotato di atmosfera, ed esistono le condizioni perché l’acqua possa scorrere sulla sua superficie. , l’acqua è un ingrediente indispensabile per la vita come noi la conosciamo. La stella Gliese 581 è una nana rossa relativamente vicina al nostro sistema, circa 20-22 anni luce nella costellazione della Lira, con 4 pianeti accertati e 6 ipotizzati.

eso1 - 800px-gliese_581_-_2010

Sembra inoltre che un pianeta perfino più adatto di Gliese581 d sia stato trovato da Kepler meno di un anno fa. Si tratta di Kepler-186f, con un diametro di quasi 14000 chilometri, diciamo un 10% più grande della Terra, e ben dentro la Zona Abitabile. Comunque, situato com’è a 490 anni luce dalla Terra, di sicuro sarà difficile intravvedere qualche immagine diretta, così non siamo sicuri su quale dei due si qualifichi meglio, almeno per il momento.

A cura della redazione di Space. com,* Qui * potete trovare una serie di  video e documentari sui pianeti extrasolari

Per adesso niente di strano, vero?

Calma e gesso, nel prossimo articolo strani oggetti entreranno in scena ……

STEPHEN P. BIANCHINI

traduzione:  ROBERTO FLAIBANI E DONATELLA LEVI

 

17 agosto 2015 Posted by | Astrofisica, Astronautica, Planetologia, Scienze dello Spazio | , , , | 2 commenti

Storie nelle rocce

La storia di un pianeta è raccontata attraverso le sue rocce. Ogni roccia che si forma memorizza il suo ambiente: la dimensione dei granuli di un sedimento ci dicono da quanto lontano le particelle sono state trasportate; le tracce degli elementi nelle rocce ignee quale era la provenienza del magma; la composizione mineralogica di una roccia metamorfica quale intensità di pressione ha subito. Una roccia ci mostra se una zona era umida o secca; se i fluidi percolati attraverso di essa erano caldi o freddi e se la superficie era stata alterata da fratture da impatto o corrugamenti tettonici.

Rocce1

foto 1. L’immagine è una sezione sottile di Dhofar 025, una meteorite lunare con vescicole da fusione da impatto. È stata scattata utilizzando gli elettroni retrodiffusi in microscopio a scansione elettronica. Qui i grigi medi e scuri indicano gli elementi più leggeri che costituiscono le rocce e i minerali tipici, mentre il bianco brillante sta ad indicare elementi più pesanti, come i metalli, e le aree nere sono fori o spazi vuoti. L’inserto è uno zoom su un clasto da fusione da impatto in questa meteorite – un pezzetto di una sola roccia formata da molti cristalli di minerali che si sono accresciuti, avendo fuso e ricristallizzato in un impatto sulla Luna.

Ogni roccia è una pagina nel libro della storia di un pianeta: la geocronologia è ciò che mette in ordine le pagine. Studia l’età le rocce e quando esse sono state modificate dagli eventi geologici. Noi conosciamo le condizioni in cui le rocce si formano grazie agli strumenti presenti sui nostri rover, quali Opportunity e Curiosity, e sugli orbiter come l’Orbiter Lunar Reconnaissance, Messenger e Cassini. La geocronologia è una misurazione aggiuntiva, che mette quelle condizioni in un contesto temporale: ci aiuta a ordinare cronologicamente gli eventi planetari e a collegarli ad altri verificatisi nel Sistema Solare.

Per esempio, che cosa stava accadendo sulla Terra quando su Marte il clima cambiava da caldo e umido al suo inospitale stato attuale? Quando hanno colpito Marte e la Luna gli impatti degli asteroidi? La geocronologia può dirci anche quanto a lungo è durato un evento. Per quanto tempo, ad esempio, i diversi pianeti hanno avuto un calore interno sufficiente a regolare i sistemi magmatici? E quanto tempo hanno avuto gli organismi per crescere in un ambiente marziano caldo e umido? Quanto a lungo le superfici sono state esposte all’ambiente dello spazio e forse trasformate da esso?

rocce2

foto 2. Questa sezione sottile ingrandita (QUE 94200) è una howardite, un esempio della regolite di Vesta. Proviene da un gruppo di meteoriti collegate a Vesta chiamate HED (howardite, eucrite, diogenite). Questo campione contiene piccoli pezzi di materiale fuso da impatto dei crateri di Vesta. Tuttavia, dal momento che non conosciamo esattamente in quale punto dell’asteroide si siano formati queste meteoriti, non possiamo ancora collegare l’età assoluta dei campioni all’elenco dei crateri sulla sua superficie.

 

 

Campioni in laboratorio

Io mi descrivo come una persona campione. Amo mettere le mani sulle rocce degli altri pianeti – campioni lunari dell’Apollo, meteoriti dalle diverse parti del mondo – aprirli e analizzarli per scoprire come e dove si sono formati. Ho iniziato ad imparare diverse tecniche di laboratorio mentre ero una studentessa specializzanda in geologia all’università statale di New York a Stoney Brook, uno dei primi posti in cui sono stati analizzati i campioni riportati dalla missione Apollo negli anni ‘70. Quando ero iscritta alla facoltà dell’Università dell’Arizona per approfondire le scienze planetarie, sviluppai un progetto usando la geocronologia per datare piccolissime vescicole di fusione da impatto, che si erano conservate nelle meteoriti lunari. Tutti i campioni riportati dalle missioni Apollo, che si sono formati in ampi impatti sulla Luna, hanno stranamente un’età simile, circa 4 miliardi di anni, che alcuni addetti ai lavori hanno iniziato a spiegare con l’incremento dei bombardamenti subiti dalla Luna in quel periodo: bombardamenti ai quali la Terra non poteva essere sfuggita. Quando stavo preparando la mia tesi, pensavo che avrei trovato di sicuro rocce da fusione da impatto più vecchie e avrei risolto il mistero. In realtà, non trovai nulla di più vecchio di 4 miliardi di anni in nessuno dei miei campioni. Era più difficile di quanto pensassi. 

rocce5foto 5. La stratigrafia si usa per comprendere l’età relativa delle rocce. Come mostrato dagli strati differentemente colorati del Gran Canyon, le rocce più giovani sono sovrapposte a quelle più antiche. Per conoscere la loro età assoluta è necessario analizzarle in laboratorio.

Quando non abbiamo campioni da scegliere in laboratorio, come possiamo stabilire quanto è vecchio un pianeta? Usiamo la datazione relativa. Gli elementi rocciosi più vecchi si trovano al di sotto di quelli più giovani: questo è il principio della stratigrafia, che si può vedere in luoghi come il Gran Canyon. Quando si hanno solo immagini orbitali, è più difficile vedere gli strati sovrapposti gli uni sugli altri, ma possiamo ricorrere a formazioni, quali le colate di lava e i crateri da impatto, per distinguere le aeree più recenti da quelle più antiche. I crateri da impatto, infatti, sono molto utili perché, fin dal pesante bombardamento di quattro miliardi di anni fa, sembrano formarsi ad un ritmo costante. Questo significa che il numero dei crateri sulla superficie può essere collegato alla sua età, come lasciare un pezzo di carta fuori appena comincia a piovere. Ma come possiamo dire quanti crateri corrispondono a quale età? Abbiamo bisogno di un punto di collegamento o di un’età assoluta. Sulla Luna gli astronauti dell’Apollo hanno raccolto campioni dalle zone vicine ai flussi di lava. Li abbiamo datati per dare loro un’età, poi abbiamo contato i crateri sulla superficie delle colate di lava e creato una scala temporale calibrata della Luna. Ora potremmo contare i crateri presenti sulle parti della Luna che non sono state esplorate, e utilizzare le loro relazioni, determinate con i campioni Apollo, per dedurre l’età della superficie. E ancora, possiamo usare questa calibratura per estendere il conteggio dei crateri ad altri pianeti come Marte per stimare l’età della superficie del pianeta, sebbene ci siano molte imprecisioni quando si usa questo metodo.

 rocce3

foto 3. questa fila di crateri da impatto, fotografata da Dawn, è una delle più suggestive formazioni sul grande asteroide Vesta. Questi ed altri impatti su Vesta hanno fatto ribollire la sua superficie, creando la regolite.

 

 

 

 

 

Campionatura in situ

Nel 2004 facevo parte di una commissione che consigliò la NASA su cosa sarebbe importante fare per la scienza lunare quando l’uomo tornerà sulla Luna. “Il contesto scientifico per l’esplorazione della Luna” era il titolo del nostro report. La commissione concordò nel ritenere che l’antico bombardamento della Luna – il periodo in cui gli enormi bacini lunari, quali Imbrium e Orientale, si formarono – era un’enorme questione in sospeso con implicazioni importanti per l’intero Sistema Solare. Noi sostenevamo l’importanza della raccolta di più campioni presi da diversi luoghi sulla Luna, non solo dalle vicinanze delle aree visitate dalle missioni Apollo: abbiamo bisogno di campioni prelevati da molti siti. Per esempio, il ritorno di campioni da Marte è un obiettivo di vecchia data della comunità scientifica che si occupa dei pianeti. Le meteoriti cadute sulla Terra ci raccontano quando i loro corpi di origine si sono formati ed evoluti, ma dove sono i loro corpi di origine? È necessario ottenere anche campioni di molti asteroidi. E quando si sono formate la liscia superficie di Venere leggermente craterizzata e la crosta povera di ferro di Mercurio? Riportare campioni da tutti questi posti? Chiaramente, non è possibile. Ma ho imparato un altro approccio alla campionatura, quando Paul Lucey, il mio collega di studi di scienze lunari e membro della commissione, mi pose delle domande riguardo a una geocronologia in situ, vale a dire spostare il nostro laboratorio nello spazio, invece di portare indietro i campioni. Io ridicolizzai l’idea. Gli risposi che servono camere pulite per la preparazione e manipolazione dei campioni, al fine di garantire la sensibilità degli strumenti, che occupano una metà della stanza, per un calcolo dell’età preciso fino a milioni di anni in minuscoli granelli di campioni vecchi miliardi di anni.

rocce4

foto 4. la maggior parte degli scienziati concorda nel ritenere ALH84001 la più antica meteorite di Marte mai rinvenuta. Questo pezzo del pianeta rosso cristallizzò 4,51 miliardi di anni fa. Mezzo miliardo di anni dopo è stato colpito da un forte evento di impatto. Noi non sappiamo dove si fosse originata la meteorite su Marte così non possiamo collegare la sua età ad uno dei crateri marziani.

Paul scosse la testa con disappunto e disse: “Veramente? Non riesci a pensare ad una sola domanda tra tutte quelle della scienza planetaria che possa richiedere un’età leggermente meno precisa?” Mi soffermai a pensare. Bene, noi non conosciamo l’età degli altopiani marziani all’interno di circa un mezzo miliardo di anni, che è un raggio ampio. Se potessimo restringere quello spazio fino a 100 milioni di anni, sarebbe sufficiente per legarlo alla storia lunare. I giovani basalti lunari, i crateri chiave sulla Luna, Marte e Vesta, l’età magmatica di asteroidi differenziati potrebbero essere tutti studi orientati ad un primo approccio con un’idea come questa.

Tempo e decadimento

I nostri metodi di datazione assoluta si basano sul decadimento radioattivo. Ogni elemento della tavola periodica ha un determinato numero di protoni ed elettroni, che lo identificano: per esempio, il carbonio ha sei protoni e sei elettroni. Tutti gli atomi hanno anche neutroni nei loro nuclei e questi possono variare di numero. Atomi che hanno lo stesso numero di protoni ma differente numero di neutroni sono detti isotopi tra loro. Così un atomo di carbonio con sei neutroni è 12C e uno con sette neutroni è 13C. Molti elementi hanno isotopi radioattivi naturali, in essi gli atomi madre decadono con il tempo in atomi figli più stabili. Questo tempo di decadimento è ormai noto, così conoscendo l’atomo di partenza e quello di arrivo, è possibile definire per quanto tempo il sistema è stato in decadimento o per le rocce il tempo per la loro formazione. Io uso un sistema radioattivo basato sul potassio (K) che decade ad argon (Ar). Il potassio è un elemento presente naturalmente nella vita di ogni giorno, ad esempio si trova nelle banane e nel granito. In realtà un numero veramente esiguo di atomi di potassio ha un numero extra di neutroni ed è quindi radioattivo. Quando esso si trova in un minerale o in una roccia, fa parte del loro reticolo, quindi possiamo valutare il potassio di partenza e l’argon di arrivo per conoscere in quanto tempo quest’ultimo si è formato, ovvero l’età della roccia. Con un’emi-vita di 1,29 miliardi di anni il sistema potassio-argon è un valido metodo per l’analisi delle rocce del sistema solare ed è stato utilizzato sia per le rocce lunari e le meteoriti che per le rocce terrestri.

 

rocce6

foto 6. il Mare della Serenità è uno dei mari lunari, vaste pianure di lava sulla superficie della Luna. Questa una ripresa della Stazione 6, dove gli astronauti dell’Apollo 17 hanno esplorato un gruppo di massi e regolite, fatta dalla camera del Lunar Reconnaissance Orbiter (LROC). Cinque ampi frammenti di roccia giacciono alla base di un lungo cordolo di massi. Provengono tutti da un singolo masso che è rotolato giù dal rilievo e si è frammentato in più parti.

L’esperimento laser potassio-argon

Il mio consulente di laurea è stato Tim Swindle, il quale provò per primo a sviluppare un sistema potassio-argon da utilizzare in un volo strumentale. Tim chiamò il suo metodo Argon Geochronology Experiment (AGE) e lo destinò a volare su una missione verso Marte. AGE utilizzava un laser (come il Chemcam su Curiosity) per misurare il potassio in piccoli campioni, poi lo fondeva in forno a 1.500 °C (2.730 Fahreneit) per liberare l’argon intrappolato. Io ero una collaboratrice nei programmi di Tim. In una conversazione con lui ad un convegno nel 2008 presso l’Ames Research Center della NASA, riflettei che l’alta energia del laser poteva rompere il reticolo cristallino e produrre argon libero senza il bisogno di un forno. Chiesi a Tim se gli sarebbe interessato provare questo metodo ma, spiegandomi che egli era al termine della concessione del suo progetto e stava prendendo altre responsabilità, suggerì che io tentassi da sola. Ci scambiammo i ruoli e io iniziai a sviluppare il Potassio Laser Experiment (KArLE) con Tim come collaboratore. Dato che sono una scienziata e non una tecnologa, ho progettato KArLE seguendo il criterio di adoperare strumenti che già esistono per le missioni sulle superfici planetarie, utilizzandoli per condurre un nuovo tipo di rilevazione: l’età delle rocce. KArLE usa uno strumento come il Chemcam sia per ablare un campione di roccia sia per misurare il potassio nel plasma, utilizzando la spettroscopia di ripartizione indotta da laser (LIBS). Come la roccia si rompe, noi misuriamo l’argon liberato con la spettrometria di massa, allo stesso modo in cui viene fatto in alcune missioni quali Curiosity, LADEE e Cassini. Abbiamo avuto circa tre anni di tempo per sviluppare una versione KArLE da laboratorio e testarla in analoghi campioni planetari con risultati incoraggianti, dal momento che abbiamo ottenuto datazioni accurate con circa solo un 10 – 15 percento di imprecisione: un livello di precisione ottimo per rispondere a molte domande sollevate dalla scienza planetaria. Possiamo fare buone misurazioni di potassio e argon, ma ogni datazione è l’interpretazione di un evento geologico, così ogni componente KArLE contribuisce a rendere la misurazione contestuale per interpretare l’età del campione. Per esempio la tessitura della superficie di una roccia è caratterizzata con un dispositivo elettronico (imager), LIBS produce un’analisi completa degli elementi della roccia e tutti i gas liberati possono essere misurati. Pensavo di essere stata piuttosto in gamba a riconvertire questi componenti e il loro uso verso la geocronologia. Ma una buona idea a volte sta solo aspettando di essere pensata e così, del tutto indipendentemente, anche altri due gruppi, in Germania e in Francia, stavano sviluppando questa tecnica quasi contemporaneamente a noi. Fortunatamente negli ultimi anni siamo arrivati a considerarci come persone che collaborano fra loro, lavorando tutte verso un obiettivo comune.

rocce7

foto 7. pezzi di colata di lava tratti dal Mare della Serenità sono stati riportati sulla Terra e datati nei laboratori, dove una datazione assoluta per la formazione lavica è stata valutata tra 3,7 e 3,8 miliardi di anni. Questo è un pezzo del basalto riportato dall’Apollo 17 che ha fornito questa età, collegandola al conteggio dei crateri dalla foto 6.

Opportunità per la datazione in situ

La capacità degli strumenti di volo di condurre la geocronologia in situ è ritenuta dalle pubblicazioni della NASA Planetary Science Decadal Survey e Technology Roadmap come uno sviluppo necessario per soddisfare i bisogni della comunità. Beagle 2, il lander esobiologico per l’orbiter Mars Express dell’ESA, è la sola missione lanciata con l’esplicito obiettivo di effettuare in situ la datazione K-Ar delle rocce. Sfortunatamente il lander Beagle 2 ha mancato la comunicazione al suo primo atteso contatto radio e questo obiettivo scientifico non è stato così soddisfatto. La prima datazione K-Ar in situ su Marte è stata pubblicata di recente, utilizzando misurazioni SAM e APXS su rocce Cumberland mudstone. L’età di 4,21 miliardi di anni (+-0,35) per Cumberland suggerisce che essa è di età molto antica e valida l’ipotesi dell’uso del sistema potassio-argon per la datazione sugli altri pianeti, anche se il metodo Curiosity è molto impreciso. Per ottenere maggior precisione e datazioni più significative, molti gruppi stanno perfezionando strumenti destinati alla datazione in situ. L’ultima opportunità per uno strumento di tale tipo è avvenuta lo scorso anno, quando il carico di Mars 2020 è stato completato. Quattro strumenti potassio-argon per la datazione in situ e altri schemi di datazione radioattiva sono stati proposti, tra cui KArLE. Benché nessuno abbia vinto un posto sul rover Mars 2020, la datazione in situ potrebbe presto divenire una realtà.

Ci sono molte domande relative alla scienza planetaria che ancora richiedono la determinazione di misurazioni di laboratorio e necessitano di campioni da riportare indietro sulla Terra. La datazione in situ non sostituisce il lavoro sui campioni riportati, ma piuttosto estende la nostra capacità di usarla come uno strumento, insieme ai nostri strumenti di imaging. Vorrei che diventasse uno strumento comune da poter utilizzare sulla Luna, su Marte, sugli asteroidi e oltre. Non sarebbe romantico avere un appuntamento in tutti quei posti?

traduzione: SIMONETTA ERCOLI

editing: DONATELLA LEVI

Titolo originale: “Stories in Stone” di Barbara Cohen , pubblicato su The Planetary Report vol35 #1-2015

11 agosto 2015 Posted by | Astrofisica, Planetologia, Scienze dello Spazio | , , , , | 1 commento

   

%d blogger hanno fatto clic su Mi Piace per questo: