Il Tredicesimo Cavaliere

Scienze dello Spazio e altre storie

Pianeti nomadi o fantapianeti?

pianeta nomadeAnche se la notizia non è certo fresca, l’esistenza dei cosidetti pianeti nomadi non è di quelle che si possano scordare in fretta. Dato che è ormai quasi un  anno che non leggo novità in merito, ho pensato che i lettori del Tredicesimo Cavaliere avebbero gradito trovare qui  un riepilogo della situazione, ma non mi stanco di ripetere: le cifre sotto riportate in relazione al numero dei pianeti nomadi esistenti nella Galassia sono sconvolgenti per la loro enormità e vanno prese con molta cautela. E’ utile ricordare che sia il microlensing gravitazionale che l’esistenza dei pianeti vagabondi sono due settori di studio ancora nuovi. Forse l’atteggiamento più consono da tenere in questi casi è quello di  Debra Fischer (Yale University): “Sarebbero una specie di gramigna dello spazio”, ha dichiarato a Nature, non senza un tocco di humour.

Pare proprio, infatti, che questi corpi celesti esistano veramente, e vaghino in grande numero nello spazio profondo seguendo il senso di rotazione galattico. Oggi disponiamo però di una prima base teorica,  che ci aiuta a capire come e perché questi corpi planetari si siano sviluppati e ad un certo punto abbiano assunto un’orbita iperbolica, abbandonando il proprio sistema. Ricercatori di tutto il mondo partecipano a questo sforzo, ma due gruppi in particolare sembrano aver dato ad oggi i contributi più significativi: l’uno diretto da Abbot e Switzer presso l’Università di Chicago, e l’altro da Louis Strigari della Stanford University. Per il momento è stato raggiunto un punto fermo: i pianeti nomadi, nella maggioranza dei casi, hanno origine nella nube a disco primordiale insieme a tutti gli altri corpi planetari del sistema, e solo più tardi, in una successiva, turbolenta fase di assestamento possono venire espulsi da esso come risultato di un “duello gravitazionale”, evento comune in tali occasioni.

baby planetHardware & numeri

La tecnica normalmente in uso per la ricerca dei pianeti nomadi è il cosidetto microlensing gravitazionale, che per sua natura fornisce le migliori prestazioni su bersagli lontani, tra i 10.000 e i 20.000 anni luce, e di rilevanti dimensioni.   Da qui  la stima di 400 miliardi di pianeti nomadi nella Via Lattea, e si parla di masse planetarie non inferiori a quella di Giove. Il telescopio ideale per qesto tipo di ricerca sarà il tanto atteso SKA, online intorno al 2020, che secondo Johnatan Nichols dell’Università di Leicester, potrebbe scoprire, entro il suo raggio d’azione di 185 anni-luce, almeno 2.800 pianeti nomadi. Inoltre i più recenti sviluppi delle teorie sulla formazione dei pianeti indicano che quelli di massa minore dovrebbero essere espulsi da un sistema stellare più facilmente dei giganti gassosi, e ciò farebbe ulteriormente aumentare la stima del numero dei pianeti nomadi in giro per la Galassia.
In proposito Matteo Bernabé, un astronomo italiano che ha collaborato alle ricerche, ha dichiarato a Media-Inaf: “La nostra stima del numero dei pianeti nomadi presenti nella nostra galassia è stata calcolata sulla base della recente scoperta, mediante una tecnica chiamata microlensing, di circa dieci di questi oggetti  in una piccola regione nel disco centrale galattico, cioè nei pressi del centro della nostra galassia. Abbiamo tratto le conseguenze di questa scoperta per quanto riguarda la popolazione globale dei pianeti nomadi, mostrando che potrebbero esistere, per ogni normale stella della sequenza principale, fino a 700 nomadi con la massa della Terra e fino a 100.000 nomadi con la massa di Plutone”.  Peccato che corpi planetari più piccoli di Giove (quelli tipo-Terra, per esempio) non rientrino nella sensibilità del microlensing, ma piuttosto in quella del  WFIRST (Wide-Field InfraRed Survey Telescope), uno strumento molto atteso che però non potrà essere lanciato prima del 2023.

disco protoplanetarioFormazione dei pianeti nomadi

David Nesvorny del Southwest Research Institute (SwRI) sta studiando la possibilità che proprio il nostro sistema solare sia stato teatro dell’espulsione di un pianeta gigante, avvenuta quando il sistema era nato da appena 600 milioni di anni, come dimostrerebbero indizi disseminati nella Fascia di Kuiper e sulla Luna. All’inizio della simulazione i pianeti giganti interagiscono con il disco protoplanetario e finiscono in configurazioni in cui coppie di pianeti vicini si bloccano a vicenda in una risonanza orbitale. Tale risonanza si verifica quando due pianeti esercitano una regolare influenza gravitazionale periodica uno sull’altro, come nel caso delle lune di Giove Ganimede, Europa ed Io, che sono in risonanza tra loro in un rapporto 1:2:4 : per un’orbita compiuta da Ganimede, Europa ne percorre due, e Io quattro.  Nesvorny suggerisce che questi sistemi risonanti diventino instabili dinamicamente una volta che il gas del disco protoplanetario si esaurisce, mentre i pianeti assumono orbite eccentriche.

Per arrivare alla situazione presente, il sistema solare esterno deve aver subito  una fase di assestamento molto violenta. Il sistema si è successivamente stabilizzato eliminando l’energia orbitale in eccesso nel disco protoplanetario i cui resti sopravvivono fino ad oggi nella fascia di Kuiper. Il quadro qui delineato suggerisce che Giove, partendo da una posizione più esterna dell’attuale, si sia mosso verso l’interno del sistema spargendo una quantità di planetesimi sia verso il Sole, causando devastazione tra i pianeti interni e la Luna, sia in direzione opposta.
Nesvorny ha aggiunto al modello un pianeta gigante supplementare, stabilendo che allo stato iniziale della simulazione i giganti di ghiaccio (Urano e Nettuno), si trovassero in risonanza tra loro entro un intervallo di 15 UA dal Sole, e il quinto gigante fosse posizionato tra loro e Saturno. Il risultato finale della simulazione, che è stata eseguita 6000 volte variando la massa totale dei planetesimi in gioco, offre una soluzione interessante: il sistema solare, una volta esauriti i planetesimi  e l’energia orbitale in eccesso, risulta essere simile all’originale con frequenza maggiore di 10 volte se il quinto pianeta gigante viene  effettivamente espulso dal sistema.

 

Wandering JupiterAvvistamenti

Per concludere cito qui di seguito alcuni avvistamenti che potrebbero riguardare i pianeti nomadi, scelti non necessariamente tra i più recenti, ma piuttosto tra i più inconsueti. Infine vorrei brevemente segnalare che dedicherò un articolo alla possibilità che l’Uomo, un giorno molto lontano, possa decidere di stabilire colonie o avamposti nella cintura di Kuiper, nella Nube di Oort e nello spazio interstellare.

L’oggetto CFBDSIR2149 (Canada-France Brown Dwarfs Survey) appare associato a un gruppo di una trentina di stelle giovani conosciuto come AB Doradus Moving Group, che si raccoglie attorno alla stella AB Doradus. Se ci fossero le prove che il candidato nomade appartiene effettivamente al gruppo, se ne potrebbe stabilire l’età a  un valore compreso tra i 50 e i 120 milioni di anni, la massa da 4 a 7 volte quella di Giove e la temperatura superficiale a 700 K.

HD106906b non è un vero pianeta  nomade, perché in effetti ha una stella intorno alla quale orbita. La cosa strana è la sua distanza dalla stella, pari a 650 UA (circa 97 miliardi di km). Un’enormità se si considera che Nettuno orbita ad una distanza media di 30 UA dal Sole. E non è tutto: il pianeta è grande e giovane, 11 volte Giove per soli 13 milioni d’anni d’età, contro i 4,5 miliardi della Terra.  Come ha fatto il pianeta a raggiungere le sue  attuali dimensioni in così poco tempo e avendo a disposizione solo le poche risorse del disco protoplanetario che si trovano a una  simile distanza. Sono state avanzate diverse ipotesi per giustificare questi dati anomali, la più accreditata è che HD106906 sarebbe stato un sistema binario in cui la seconda stella non sarebbe riuscita ad accendersi.

La scoperta del pianeta-nano 2006 SQ372 fu resa nota soltanto nel 2008 nel corso di un simposio specializzato tenutosi a Chicago. In quel momento  l’oggetto si trovava nei paraggi di Nettuno, impegnato a percorrere un’orbita fortementte ellittica, assai simile a quella di Sedna, che l’avrebbe condotto a 150 miliardi di km. dal Sole. Il corpo celeste avrebbe potuto formarsi, come Plutone, nella Cintura di Kuiper, o più probabilmente provenire dalla parte più interna della Nube di Oort. Tali oggetti potrebbero essere in alcuni casi dei pianeti nomadi, e sarebbe utile studiarli più a fondo quando se ne presenta la possibilità, ma per quanto riguarda 2006 SQ372 possiamo essere sicuri che non lo rivedremo prima di 22000 anni.

ROBERTO FLAIBANI 

Fonti:

  • Slow Boat to Centauri: a Millennial Journey Exploiting Resources Along the Way
    by Paul Gistler – JBIS vol. 66 – 2013 pp 302 , 311
  • Nomads of the Galaxy, by Louis E. Strigari et. al.  – Kavli Institute for Particle Astrophysics and Cosmology, Stanford University
  • The Steppenwolf: a Proposal for a Habitable Planet in Interstellar Space
    by D.S. Abbot (Department of the Geophysical Sciences, University of Chicago) and E.R. Switzer (Kavli Institute for Cosmological Physics, University of Chicago)
  • So many lonely planets with no star to guide them
    by Nadia Drake – Nature 2/12/13
  • HD106906b
    by Sabrina Pieragostini – Panorama 14/12/13
  • Pianeti nomadi, la Via Lattea ne è piena
    MEDIA INAF  venerdì 24 febbraio 2012

From Centauri Dreams:

  1. A Gas Giant Ejected from our System?
    by Paul Gilster on November 11, 2011
  2. An Icy Wanderer from the Oort Cloud
    by Paul Gilster on August 18, 2008
  3. Finding an Interstellar Wanderer
    by Paul Gilster on May 17, 2011
  4. New Findings on Rogue Planets
    by Paul Gilster on May 19, 2011

 

17 settembre 2014 Posted by | Astrofisica, Astronautica, Planetologia, Radioastronomia, Scienze dello Spazio, Volo Interstellare | , , | 1 commento

Start Interstellar!

interstellar1Il 6 novembre sbarcherà sugli schermi di tutto il mondo Interstellar, il nuovo film di Cristopher Nolan, visionario regista autore di Memento, Inception e dell’ultima trilogia del Cavaliere Oscuro. E’ un film che già sta facendo discutere di sé, perché il suo approccio può essere definito nelle due righe che accompagnano il trailer promozionale: “L’Umanità è nata sulla Terra, ma non è stato mai detto che vi debba morire”(Mankind was born on Earth, it was never meant to die here..)  L’obiezione immediata è: perché discutere del “solito” blockbuster fantascientifico americano? Perché Nolan ha dimostrato in più di un’occasione di essere un regista di grande valore che sa coniugare con  disinvoltura l’action movie con la riflessione. E Interstellar non fa eccezione, perché pone le basi per riaccendere il dibattito tra chi sostiene – ed è la maggioranza secondo la rivista The Space Review– che è inutile andarsi a cercare guai nello spazio, tanto l’essere umano può tranquillamente salvarsi sulla Terra, grazie alla propria abilità tecnologica, e chi invece afferma che ormai siamo avviati verso l’autodistruzione, con risorse sempre più scarse e un sistema climatico completamente stravolto.

Chiacchiere da bar della facoltà di astrofisica? Forse per qualcuno, ma se ragioniamo sul nostro futuro – o se non proprio sul nostro, su quello di chi ci seguirà – non possiamo non concordare sul fatto che si tratta di questioni riguardanti tutta l’Umanità. E non abbiamo usato questo termine a caso. Quando si parla di spazio la dimensione individuale tende a scomparire per fare posto a qualcosa di più vasto, la Specie Umana. Senza voler sconfinare in territori di pertinenza dei predicatori dell’ultimo millennio, è innegabile che l’infinità dell’universo ci pone in una condizione di inquietante impotenza, che le religioni manipolano con sconcertante  disinvoltura. Una divagazione per intendere che stiamo parlando di argomenti troppo importanti per lasciarli nelle mani esclusive di chi detiene il potere, sia esso politico, economico o religioso, perché sono argomenti che appartengono a tutti noi.

interstellar2Con questo approccio, Interstellar si ricollega idealmente a quel capolavoro sconosciuto ai più, girato da Robert Zemeckis nel 1997. Si tratta di  Contact, realizzato con la collaborazione scientifica di Kip Thorne, uno dei massimi esperti mondiali di buchi neri e wormhole, (più noti al grande pubblico come stargate), e interpretato proprio da quel Matthew McConaughey oggi protagonista di Interstellar. Nella pellicola di Zemeckis era comprimario di una splendida Jodie Foster che impersonava Jill Tarter, all’epoca dinamica presidentessa dell’Istituto SETI (Search for the Extra-Terrestrial Intelligence), ora passata armi e bagagli nel board del 100YSS (One Hundred Year Star Ship), la formazione guida del “movimento interstellare” americano.

100yss-logoIl movimento ebbe origine nel 2011 a Orlando in Florida, nel corso di una convention dove sedevano uno accanto all’altro ingegneri della NASA, studenti e professori universitari e molti osservatori militari, in un’atmosfera coloratissima che fece gridare alcuni alla “Woodstock dell’interstellare”. In quell’occasione, l’ex astronauta nera Mae Jamison vide assegnare al suo 100YSS l’incarico di guidare il movimento e un primo finanziamento di 500 mila dollari elargito dalla prestigiosa DARPA (l’agenzia del Pentagono per l’alta tecnologia). Mentre il 100YSS raccoglieva i primi consensi (Bill Clinton, Michelle Obama) e riconoscimenti internazionali (una loro delegazione è stata accolta con tutti gli onori dal Parlamento Europeo per riferire sui progressi in tema di interstellare), un’altra componente del movimento si raccoglieva intorno alla sigla di Icarus Interstellar, una delle più prestigiose ONG del settore spaziale, e al nome di Kip Thorne, per dar vita ad una conferenza chiamata “Starship Congress”. Chi ha potuto leggere gli atti dell’edizione 2013, assicura che la somiglianza esistente con i presupposti teorici e storici di Interstellar è  impressionante.

Contact1E come quasi venti anni fa Contact mostrava il drammatico confronto tra la cultura religiosa, irrazionale e antropocentrica e quella laica, razionale ed evoluzionista, così nel 2014  Interstellar prefigura una nuova cultura basata su nuove misure, appunto, interstellari. Non si parla più dell’Umanità come di un’accozzaglia di uomini e donne abbarbicati fino all’estinzione al loro pianeta natale, la Terra.  Si parla di una Specie Umana,  che imparerà a vivere su pianeti con caratteristiche diversissime e muoversi fra di essi  sfruttando le leggi di una nuova Fisica.

Ma, come appare evidente dagli stessi film prodotti, molti negli Stati Uniti tendono a dimenticare, come se al di là della Statua della Libertà ci fosse il vuoto. E infatti è proprio a un altro blockbuster a stelle e strisce, Gravity, che si aggrappano i teorici del “non c’è nessuna opportunità nello spazio per gli esseri umani”, cioè che è inutile tentare l’avventura interstellare, è solo uno spreco di risorse e di denaro. Vale la pena, a questo proposito, ricordare che proprio i precursori della Nuova Frontiera sembrano oggi volersi rinchiudere sempre di più nel loro santuario: secondo quanto afferma ancora The Space Review, persino la NASA non gode più del sostegno della maggioranza degli americani, che la ritengono ‘inutile’.

Kip Thorne(nella foto:  Kip Thorne)

E allora, che senso possiamo dare a un film come Interstellar, basandoci esclusivamente sulle suggestioni dei trailer e i rumors finora circolati? Credo  che dovremmo innanzitutto  liberarci dal pensiero ossessivo sull’autodistruzione umana, che spesso fa da premessa a questi film, e farci qaulche domanda in più sulla nostra natura. Il replicante Roy Batty nel cult Blade Runner si interrogava su chi siamo, dove andiamo, mentre la maggior parte di noi ha dimenticato questi quesiti fondamentali, per rivolgere la propria attenzione esclusivamente all’ultimo modello di televisore o di tablet. Per carità nessuna crociata new age contro il consumismo, ma se ogni tanto riuscissimo a rivolgere il nostro sgaurdo verso le stelle, anche dove è difficile, come nelle grandi città, forse riusciremmo a captare umilmente la nostra finitezza di esseri umani e contestualmente, il desiderio di conoscenza che ci ha sempre fatto grandi, consentendoci di superare ostacoli impensabili.

Ci siamo chiusi al rischio, e abbiamo perso – in nome di una sicurezza tutta da dimostrare – la passione, l’amore e il gusto per la scoperta, per l’avventura, per l’esplorazione. In una parola, per tutto cio’ che Dante aveva suo tempo compreso, quando fa dire a Ulisse, rivolto ai suoi compagni, che ‘fatti non foste per viver come bruti, ma per seguir virtute e conoscenza’.

 

GIANVITTORIO FEDELE

ROBERTO FLAIBANI

 

1 luglio 2014 Posted by | Astrofisica, Astronautica, Fantascienza, Scienze dello Spazio, SETI, Volo Interstellare | , , , , , , , | 2 commenti

Conferenze sul volo interstellare nel 2014

L’anno scorso è stato registrato il più alto numero di conferenze e congressi dedicati al volo interstellare tenutisi nel mondo:  il congresso del 100YSS a Houston,  e a Dallas quello denominato “Icarus Interstellar Starship”, due eventi chiamati ”Starship Century” a Londra e a San Diego, un’altra stupefacnte conferenza tenutasi a Londra sulla “filosofia dell’interstellare” ad opera della BIS, e il Tennessee Valley Interstellar Workshop. Senza contare le decine di eventi locali SETI che si svolgono ogni anno in tutto il mondo, e gli spazi sempre più importanti che vengono dedicati al problema nell’ambito di manifestazioni dedicate all’astronautica, perfino nel colossale IAC che raccoglie migliaia di delegati da ogni parte del mondo e si svolge di anno in anno in località diverse (2012 Napoli, 2013 Pechino, 2014 Toronto).

symposium_14Era chiaro che le reali dimensioni del “movimento interstellare”, nato nel 2011 intorno al congresso di fondazione del 100YSS in un’atmosfera techno-hippy che ricordava Woodstock, non giustificavano l’esistenza di tutti quegli eventi pubblici. Così quest’anno vediamo all’opera una sorta di selezione naturale che conferma solo gli spazi dedicati nell’ambito di mega-eventi come lo IAC, e la sopravvivenza di  manifestazioni specializzate, quando sostenute da una struttura organizzativa robusta e da finanziamenti adeguati.

Il 100 Year Starship Symposium si conferma come l’evento più importante per il movimento interstellare. Il tema di quest’anno è “Il cammino verso le stelle, le impronte sulla Terra”, una chiara allusione alle sinergie che gli organizzatori cercano di stabilire tra il massiccio avanzamento nelle tecnologie della propulsione e nelle scienze biologiche che ci aspettiamo di ottenere  con le future missioni nello spazio profondo, e la ricaduta nel breve periodo sotto forma di strumenti utili per il miglioramento della qualità della vita sulla Terra di oggi. Gli argomenti di discussione sono elencati nel sito web e spaziano dalla propulsione alla produzione e conservazione dell’energia, dalle tecnologie derivate a breve termine, alle comunicazioni, all’informatica e alla biologia. Una particolare attenzione verrà data alle tecnologie del supporto vitale, alla sociologia e al recupero e trasmissione dei dati su  distanze  interstellari, nonché alle tecniche educative necessarie per ottenere dei veri e propri “cittadini interstellari” . Il congresso si terrà dal 18 al 21 settembre al George R. Brown Convention Center di Houston.

C’era una volta, in quel di Aosta, un piccolo convegno sull’interstellare che si teneva  nell’intimità di un vecchio e comodo albergo. I suoi ideatori, Les Johnson e Greg Matloff, volevano che gli ospiti si sentissero a loro agio e fossero nel giusto spirito per elaborare visioni lungimiranti ma anche pronti per agire nel breve termine. Oggi purtroppo il vecchio hotel è stato dichiarato inagibile e non si sa che fine farà,  ma Les e Greg sono riusciti  a recuperare un po’ di quella atmosfera valdostana e invitano i partecipanti al loro nuovo Tennessee Valley Interstellar Wokshop ad andare oltre i limiti della conferenza, superando la nuda enunciazione di concetti per suggerire progetti, offrire collaborazione, ricerca attiva,  e pianificazione della missione. Da segnalare due mini-corsi accessibili su prenotazione, il primo dedicato alla propulsione, il secondo al terraforming. Il convegno si terrà dal  9 al 12 novembre ad Oak Ridge per 75 partecipanti a numero chiuso. La pubblicazione degli atti sarà garantita dal Journal della BIS.

ROBERTO FLAIBANI

 

 

Fonte: “Interstellar Conferences for 2014” pubblicato da Centauri Dreams il 28 aprile 2014

24 maggio 2014 Posted by | News, Volo Interstellare | , , | 1 commento

Icarus, il figlio di Daedalus

Salutiamo e ringraziamo Luigi Fontana, noto ed esperto divulgatore di cose di spazio, che per la prima volta ci gratifica firmando le pagine di questo blog.(RF)

EneaFrascatiLaserNo, nulla a che fare con i noti personaggi mitologici, padre e figlio, che con ali costituite di cera e piume d’uccello fuggirono dal labirinto del Minotauro (e Icaro fece la ben nota brutta fine volando troppo vicino al Sole). Icarus è il nome di un interessante progetto sovranazionale, iniziato nel 2009, e volto alla progettazione “realistica” di una sonda robotica interstellare, adatta ad esplorare un sistema stellare vicino, nell’arco di tempo di una vita umana (qualche decennio), raggiungendo velocità dell’ordine dell’8% della velocità della luce.

Il termine “realistico”, a essere onesti, è usato molto generosamente. Le regole del progetto, è vero, ammettono solo tecnologie esistenti, o ragionevolmente prevedibili nel prossimo futuro, ma fanno assunti decisamente ottimistici sui prossimi sviluppi tecnologici, e soprattutto si astraggono completamente da problemi assai concreti come il reperimento dei fondi e l’esistenza o meno di una volontà politica di realizzare poi in pratica un’opera simile.

L’organizzazione che conduce questo studio, Icarus Interstellar, è formata da scienziati e tecnici di varia estrazione, da professionisti di NASA e ESA, a docenti universitari, magari in pensione, sino a semplici entusiasti. Il nome Icarus è stato scelto proprio perché il progetto è un po’ il “figlio” del celebre progetto Daedalus, già trattato in questo blog, un analogo think tank supportato dalla British Interplanetary Society tra il 1973 e il 1978. Al contrario di Daedalus, quasi esclusivamente anglosassone e tutto sommato poco approfondito, Icarus raccoglie collaboratori da tutto il mondo, e soprattutto è molto più dettagliato e sfrutta appieno gli ultimi 40 anni di sviluppo tecnologico per “fare il punto” circa la nostra (alquanto ipotetica, per ora, come vedremo) capacità di costruire una sonda in grado di esplorare, nell’arco di tempo di una vita umana, un sistema stellare vicino.

Longshot spaceship(nell’immagine l’astronave Longshot) È importante sottolineare che Icarus è in buona e serissima compagnia, e non è il frutto di eccessive visite al pub da parte di nerd troppo cresciuti. Anche se la prima sonda interstellare è probabilmente molto lontana nel nostro futuro, pensarci oggi è un utile esercizio, per la comunità scientifica, anche solo per elencare tutti i problemi che dovranno essere risolti, stabilire delle priorità, stendere le specifiche dei software necessari, eccetera.

È un po’ come chiedersi se Dalla Terra alla Luna di J. Verne abbia contribuito al progetto Apollo. La risposta, ragionevolmente, è sì, almeno come fonte di ispirazione per le generazioni di scienziati e tecnici che in poco più di un secolo avrebbero tradotto in pratica i sogni del grande romanziere francese.

Basti pensare che negli ultimi decenni istituzioni serissime, a partire dalla NASA, hanno supportato questi progetti. Proprio la NASA, nel 1987/88 ha progettato con una certa completezza una sonda interstellare interamente realizzabile con la tecnologia disponibile all’epoca (o con sue prevedibili maturazioni, valutate però abbastanza prudenzialmente). E soprattutto con un budget “misurabile”, se non proprio ragionevole. Il progetto Longshot. Per i curiosi, un esteso report è disponibile online a questo indirizzo.

La sonda Longshot peserebbe 396 tonnellate alla partenza, ovvero poco meno della stazione spaziale internazionale (450 tonnellate) che ad oggi è di gran lunga il più pesante manufatto inviato in orbita. Longshot è simile a Icarus per il metodo di propulsione, che descriveremo in seguito, ma si propone di mettere una sonda in orbita attorno ad una stella vicina – il supposto obiettivo è alfa Centauri B – mentre Icarus prevede solo un “flyby”, ovvero un rapido passaggio vicino al corpo celeste di interesse, per poi perdersi nello spazio. C’è una ovvia enorme differenza tra i due profili di missione. Per entrare in orbita bisogna rallentare una volta arrivati in prossimità della destinazione, e per rallentare bisogna portasi dietro il carburante per farlo, carburante che pesa e che va accelerato all’inizio della missione. A conti fatti ne consegue una velocità di crociera più bassa, e quindi un viaggio più lungo, ulteriormente allungato dalla fase di “frenata” finale. Nello specifico, Longshot manderebbe i primi dati a Terra dopo un secolo abbondante dal lancio (ma poi potrebbe studiare il sistema solare bersaglio per anni) mentre Icarus fornirebbe risultati molto più in fretta – 40 o 50 anni – ma solo per alcuni giorni. Le rispettive velocità di crociera sarebbero 4,5% della velocità della luce (13000 km/s circa) contro il 7-8%.

Daedalus(nell’immagine l’astronave Daedalus) Entrambi i progetti si basano su un sistema di propulsione che ad oggi non è ancora stato realizzato nemmeno come prototipo, anche se è una tecnologia molto studiata per la produzione di energia. La fusione a confinamento inerziale. Persino l’idea di base non è tanto semplice. Il combustibile della sonda sarebbero delle “palline” (“pellets“) di una miscela di deuterio e trizio, con un guscio di Litio e altri elementi leggeri. Ognuno di questi pellet viene sganciato nella camera di reazione, dove viene colpito con enorme precisione, da una serie di laser ad alta potenza, che vaporizzandolo ricreano per un istante le condizioni di temperatura e pressione per provocare la fusione nucleare del deuterio e del trizio, un sottoinsieme delle reazioni di fusione che hanno luogo nel nucleo del Sole. Il plasma così formatosi, opportunamente direzionato da campi magnetici, sarebbe espulso ad enorme velocità, fornendo quindi la spinta alla sonda. Icarus prevede di ricavare l’energia per il funzionamento dei laser e del campo magnetico dalla reazione di fusione stessa, in modo però ancora alquanto nebuloso. Longshot, al contrario, prevede di avere a bordo un piccolo reattore nucleare convenzionale, a fissione, di potenza relativamente limitata (300 kW) ma sufficiente per le necessità del volo.

Le sfide tecnologiche di entrambi i progetti, al di là dell’ovvia necessità di costruire almeno un dimostratore funzionante del sistema di propulsione (e già non è poco!) sono formidabili. I principali problemi sono quattro.

  1. Ridondanza e affidabilità. L’idea di un macchinario estremamente complesso in grado di funzionare in modo affidabile per svariati decenni fa tremare qualsiasi ingegnere. Se da un lato l’elettronica ha già dato notevoli prove in questo campo (si pensi alle sonde Voyager, lanciate nel 1977 e ancora in buona parte operative) dall’altro Icarus o Longshot dovrebbero necessariamente avere migliaia di parti mobili, dai sistemi per puntare i telescopi a pompe per il controllo della temperatura. E indovinate cosa si è rotto su uno dei Voyager? L’unica parte mobile, la piattaforma orientabile per sostenere le videocamere… È vero che la tecnologia aerospaziale è ormai alquanto matura e la ridondanza dei sistemi potrebbe sopperire al cedimento di quasi qualsiasi sistema, ma resta l’incubo che tutta la missione possa fallire per un guasto che potrebbe essere facilmente riparato con un cacciavite… se ci fosse qualcuno per azionarlo.

  2. E qui si aggancia il secondo problema. Bisognerebbe sviluppare dei robot di servizio in grado di operare piccole riparazioni, eventualmente dopo un “consulto” col comando missione (consulto che a grande distanza potrebbe richiedere anni, ma è comunque praticabile se non nelle fasi cruciali della missione). La tecnologia in questo campo però è ancora immatura, per non dire embrionale. Basti pensare che sistemi del genere erano stati previsti per la stazione spaziale, dove in realtà operano gli astronauti. Non si è ancora riusciti a costruire un robot che abbia la flessibilità di un operatore umano nelle operazioni “meccaniche”. E non parliamo nemmeno del farlo autonomamente…

  3. Comunicare con la Terra. Ovvio che arrivare sino ad un altro sistema solare e non riuscire poi a comunicare a Terra le scoperte effettuate sarebbe una beffa atroce. Purtroppo trasmettere segnali a qualche anno luce di distanza è tutt’altro che banale. Vero è che avendo già a bordo laser potentissimi per la propulsione, si può usarli anche per comunicare. Ma a conti fatti non si potrebbero trasmettere più di un migliaio di bit per secondo, che è una quantità di informazione davvero modesta. Una singola fotografia ad alta risoluzione richiederebbe circa sei ore di trasmissione. Tanto per fissare le idee, molte sonde scientifiche in orbita intorno alla Terra trasmettono diversi miliardi di bit di dati al giorno!

  4. Viaggiare ad una significativa percentuale della velocità della luce è ovviamente irrinunciabile per realizzare l’esplorazione di un altro sistema solare entro qualche decennio, ma viaggiare a migliaia di chilometri al secondo implica che anche la polvere interstellare sarebbe un rischio significativo in caso di urto. Sia Icarus che Longshot prevedono degli scudi ablativi contro la polvere più fine, ma anche un granello di sabbia, a quelle velocità, potrebbe facilmente danneggiare o addirittura mettere fuori uso qualcosa di vitale. E non c’è modo di difendersi da questo in modo efficiente. Da questo punto di vista Longshot, prevedendo di rallentare in prossimità del bersaglio, abbassa leggermente la percentuale di rischio, ma non di molto.

A monte di tutte questi problemi tecnici possiamo mettere ancora tre considerazioni, due positive ed una negativa.

  1. La prima positiva è presto detta. Il primo pianeta extrasolare è stato scoperto solo una ventina di anni fa (1992). Già oggi se ne conoscono più di 1000. E’ quindi sicuro che quando (o se?) si lancerà una sonda interstellare come quelle qui descritte, lo si farà verso un sistema solare che contiene certamente almeno un pianeta ritenuto interessante dal punto di vista della possibilità dei sviluppo della vita (anche in una possibile ottica di successiva colonizzazione).

  2. Pure positivo è il fatto che la miniaturizzazione ha compiuto passi da gigante, impensabili ai tempi di Dedalus e forse anche ai tempi di Longshot. Forse la nostra prima sonda interstellare potrebbe avere le dimensioni di un furgone, non quelle di una nave, con conseguente abbattimento dei costi.

  3. Quella negativa non è una considerazione tecnica, ma “sociale”. L’umanità ha perseguito per quasi tutta la sua storia progetti che chiaramente non avrebbero potuto essere portati a termine nel corso di una generazione. Basti pensare alle piramidi egizie, ai castelli medioevali oppure alle grandi cattedrali. Oggi non più. L’ultimo progetto di questo tipo (la chiesa della Sagrada Familia di Barcellona, iniziata nel 1882 e considerata a metà strada nel 2010) incontra notevoli problemi di finanziamento, e comunque, quando la si cominciò, si sperava di finirla entro qualche decennio.

Icarus(nell’immagine l’astronave Icarus) Forse, come società, abbiamo perso la capacità di pensare sui tempi lunghi, e personalmente reputo molto improbabile che qualche governo, o insieme di governi, che comprensibilmente mira soprattutto a farsi rieleggere, approvi finanziamenti colossali per un progetto che, se va tutto bene, darà i suoi frutti tra 100-120 anni (ammettendo un ottimistico intervallo di soli trent’anni tra l’avvio del progetto e il lancio). Lo spirito di chi lavorava ad una cattedrale sapendo che solo il suo bisnipote l’avrebbe vista finita mi sembra perduto nella moderna frenesia.

A meno che telescopi di prossima generazione – questi sì molto realistici e in parte già in costruzione o in studio – non ci mostrino attorno a qualche stella vicina un pianeta particolarmente attraente. Questo, forse, costituirebbe uno stimolo potentissimo per realizzare la prima sonda interstellare, che come detto sopra potrebbe essere più semplice e leggera di Longshot o Icarus. Sempre che nel frattempo non salti fuori qualche rivoluzione tecnologica nel campo della propulsione che renderebbe di colpo obsolete tecnologie per ora ancora futuribili. Non ci resta che aspettare.

LUIGI FONTANA

 

Credits: ENEA Frascati,  NASA, British Interplanetary Society, Icarus Interstellar.

 

25 marzo 2014 Posted by | Astrofisica, Astronautica, Scienze dello Spazio, Volo Interstellare | , , , , , | Lascia un commento

Dall’apocalisse atomica allo spazio profondo

La ricerca di sistemi di propulsione spaziale è da sempre oggetto di accesi dibattiti scientifici e fantascientifici. Dall’inizio dell’era atomica, a partire dalle bombe sganciate su Hiroshima e Nagasaki, il mondo fu testimone e vittima della più potente fonte di energia di cui l’uomo abbia mai potuto disporre. L’energia atomica entrò nella storia in maniera tragica e dirompente, tanto che nell’immaginario collettivo divenne sinonimo di distruzione. In realtà portò con sé anche il presupposto di un grande sviluppo energetico per scopi civili, nell’ambito dei quali si vennero a trovare i viaggi nello spazio: i veicoli predisposti per affrontarli necessitano di grandi quantità di energia per coprire enormi distanze, anche solo nel sistema solare, nei confronti delle quali le fonti d’energia chimica risultano del tutto inadeguate.

Fig. 1 Sequenza del test con navetta Orion in scala ridotta.Il primo a proporre la fusione atomica quale possibile tecnica di propulsione per i viaggi interstellari fu Edward Teller, il padre della bomba H e uno degli scienziati che contribuirono al progetto Manhattan. Egli ebbe questa intuizione durante i primi test atomici nel deserto del Nevada nel 1945, ma il primo a progettare un sistema di propulsione atomica ad impulso fu Stanislaw Ulam nel 1946. Solo due anni dopo l’impiego delle bombe atomiche sulle due città giapponesi, Ulam era già convinto che si potesse utilizzare quella nuova forma di energia per muovere una navicella dalla terra allo spazio profondo. Così, assieme al collega Evrett, diede il via, attraverso un memorandum redatto a Los Alamos nel 1947, al progetto Orion, che tra 1950 ed il 1963 venne sviluppato in collaborazione con la General Atomics e con il sostegno della DARPA.

L’idea originale consisteva nell’utilizzo di astronavi da 40 t, che trasportassero un gran numero di bombe a fissione (con potenza da 5 a 10 chilotoni) da far detonare dietro la nave, per il decollo da terra verso lo spazio. Alcuni test per provare la bontà del progetto Orion vennero realizzati nel deserto del Nevada, utilizzando una riproduzione in scala ridotta della navicella ed esplosivo convenzionale (Fig.1). Dal 1955 fino al 1963 i test proseguirono con esito positivo. La navicella sperimentale assomigliava ad un imbuto rovesciato (Fig.2): una parte più larga alla base ospitava una piastra di spinta circolare, che fungeva anche da schermo protettivo contro le radiazioni e dalla quale venivano sparati gli ordigni atomici, attraverso un’apertura centrale e l’uso di gas in pressione. La piastra di protezione assorbiva le radiazioni e l’onda d’urto dell’esplosione, trasferendone l’energia a degli ammortizzatori a gas, che erano connessi direttamente alla sezione della nave che ospitava l’equipaggio e le attrezzature. L’esterno della piastra doveva essere composta da materiale carbonaceo, protetto dall’erosione con olio lubrificante distribuito da appositi spruzzatori. Per stabilizzare l’assetto della nave tra una deflagrazione e l’altra, si pensò di impiegare degli appositi razzi, ipotizzati ad acqua ossigenata (H2O2) posti sulla parte frontale del veicolo: questi avrebbero dovuto spingerla lateralmente, per evitare che si capovolgesse o uscisse dalla propria rotta. I test avevano appurato che non vi erano ostacoli tecnici per la realizzazione né pericoli per l’equipaggio.

Fig.2La propulsione atomica ipotizzata in questo progetto venne sviluppata anche con il contributo dello scienziato britannico Freeman Dyson, secondo il quale si sarebbero potute coprire enormi distanze interplanetarie e interstellari, grazie allo sviluppo di velocità molto elevate. La grandezza delle navi progettate variava da 10 metri – 20 metri, in quelle pensate per poter essere lanciate da un Saturn-V, a 40 metri, nella versione che sarebbe partita direttamente dalla superficie terrestre, fino ad una massima di 400 m. Prese così corpo l’idea di missioni spaziali per un tempo compreso tra i 150 giorni per Marte e 910 per Giove, con una velocità media di 63,740 m/s (fig.3).

Fig.3 Possibile evoluzione OrionLe testate atomiche impiegate da Orion erano a fissione, molto simili a quelle sganciate durante la fine della seconda guerra mondiale. Le bombe dovevano avere dei serbatoi di idrogeno in modo da utilizzarne la spinta aggiuntiva che questo gas avrebbe sviluppato quando l’esplosione atomica l’avrebbe trasformato in plasma. Bisogna tener presente che l’idrogeno è l’elemento più leggero della tavola periodica degli elementi, quindi anche la sua molecola è particolarmente piccola e ciò le permette di raggiungere altissime velocità. È questa la ragione per cui l’idrogeno viene spesso immaginato come propulsore di “motori” spaziali: maggiore è la velocità che può raggiungere un oggetto e maggiore sarà la spinta che riuscirà ad imprimere. L’unico difetto di questo gas è che non viene prodotto da alcuna reazione chimica, anzi molte lo utilizzano come combustibile, liberando molecole molto più complesse: il che significa molto più pesanti e di “dimensioni maggiori”.

Fig.4 Struttura dell'OrionÈ evidente che con queste premesse si sarebbe messa la parola fine su uno dei progetti più avveniristici, e contemporaneamente più pericolosi, della storia dell’astronautica. Ad oggi alcuni studi relativi ad esso (soprattutto la descrizione tecnica degli ordigni atomici e la loro miniaturizzazione) non sono stati ancora resi pubblici dalle autorità statunitensi.

La lezione del progetto Orion non cadde definitivamente nel dimenticatoio: tra il 1973 ed il 1978 venne ipotizzata ancora una propulsione nucleare ad impulso nell’ambito di un nuovo progetto, il DAEDALUS, portato avanti da un team di scienziati guidati da Alan Bond e promosso dalla British Interplanetary Society. Il progetto DAEDALUS era pensato per un viaggio interplanetario e prevedeva, abbandonando l’uso di ordigni atomici a fissione, la costruzione di un razzo a fusione atomica ad impulso che sarebbe stato utilizzato solo nello spazio. La nave DAEDALUS sarebbe stata formata da una camera di combustione a forma di campana, all’interno della quale sarebbero stati lanciati pallet di deuterio ed elio 3, fatti detonare da un fascio di elettroni: il plasma generato avrebbe accelerato la nave. Un razzo di questo tipo avrebbe raggiunto un peso complessivo di 54.000 t, dei quali 50.000 t solo di carburante e il restante costituito da carico scientifico. La velocità raggiungibile da questo mezzo era stimata superiore a quella del progetto Orion. Erano previsti due stadi nei quali si sarebbero utilizzate due camere di combustione differenti. Nel primo stadio la velocità massima avrebbe raggiunto il 7,1% di quella della luce per almeno due anni fino all’arrivo al secondo stadio, che avrebbe incrementato la velocità del mezzo fino al 12% della velocità della luce per almeno 1,8 anni; dopo di che la navicella avrebbe viaggiato per inerzia nello spazio per 46 anni.

Fig.5 httpwww.daviddarling.infoimagesDaedalus_diagram.jpgIn questo progetto si ideò una nave per un viaggio interstellare verso la stella Barnard, con un tempo di viaggio di circa 50 anni, durante i quali si sarebbe iniziata una prima esplorazione dello spazio profondo attraverso due telescopi ottici da 5 m di diametro e due radiotelescopi da 20 m, puntati verso la stella di destinazione. Si era pensato persino di equipaggiare la nave di 12 sonde autonome, che sarebbero state sganciate nelle vicinanze della stella Barnard. Queste ultime avrebbero avuto un sistema di propulsione ionica alimentata dal generatori elettronucleari, equipaggiate con telecamere, spettrografi e altri sensori. Mentre sulla nave si era ipotizzato di utilizzare dei robot per riparare malfunzionamenti della nave madre e delle sonde d’esplorazione (Fig.5).

L’ambizioso progetto DAEDALUS registrò numerosi problemi per la sua attuazione: l’elio 3, che sarebbe stato il principale combustibile era molto raro sulla terra. Si pensò allora di organizzare delle missioni verso Giove allo scopo di reperire abbastanza elio 3 per il viaggio, operazione che avrebbe richiesto un grande dispendio di energia e nuovi problemi tecnici. Inoltre, ancora non si possedeva una tecnologia così avanzata da indurre una fusione atomica attraverso i raggi elettromagnetici.

Fig.6 Principio di funzionamento del LongshotLe problematiche emerse nel progetto DAEDALUS spinsero a ricercare nuove strade per la propulsione dei veicoli spaziali. Così la NASA, a metà degli anni 80, iniziò lo studio del sistema denominato Longshot che abbandonava l’idea di una propulsione a fusione nucleare ad impulso per adottare un più convenzionale reattore a fissione. Questa scelta comportava comunque un aumento dei costi, dovuto al maggior peso complessivo della nave, quindi alla necessità di una maggiore energia per poterla accelerare, e registrava una riduzione dell’accelerazione e dell’efficienza generale del sistema. Nonostante gli inconvenienti la nave poteva raggiungere il 4,5% della velocità della luce, sufficienti a coprire un viaggio tra la Terra ed Alpha Centauri in circa 100 anni.

Degno di nota è anche il progetto Vista, supervisionato negli anni 80 dall’équipe scientifica del Lawrence Livermore National Laboratory, che prevedeva la costruzione di una nave a forma di cono rovesciato (Fig.6): al vertice avrebbero trovato posto l’equipaggio e le attrezzature necessarie per il viaggio, mentre dietro era alloggiata la parte di cono aperto destinata alla fusione atomica di deuterio e trizio, innescate da raggi laser concentrati con appositi specchi, sfruttando il principio del confinamento inerziale (Fig.7). Un ipotetico viaggio verso Marte con questo sistema di propulsione sarebbe durato 60 giorni. Anche per questo progetto, però, valgono alcune delle limitazioni tecniche evidenziate precedentemente, quale ad esempio la reale fattibilità dell’innesco di una reazione atomica attraverso le raggi laser: reazione possibile dal punto di vista teorico ma ancora lontana dall’essere tecnicamente realizzabile oggi.

Dagli anni ‘90 in poi si è centrata l’attenzione sui sistemi che potessero risolvere i problemi incontrati in Orion e DAEDALUS, cercando di recuperare i vantaggi offerti da entrambi. Sulla scia di ciò hanno preso il via tre diversi progetti: il progetto Medusa della British Interplanetary Society; il Mag Orion della Andrew Space e il Mini Mag Orion.

Fig.7 Principio del confinamento inerzialeIl progetto Medusa venne presentato agli inizi degli anni ‘90 e riprendeva l’idea di usare bombe H nello spazio ma, invece di utilizzare una piastra di metallo per sfruttare l’energia della detonazione, proponeva l’uso di una vela di grandi dimensioni. Diversamente da Orion, inoltre, non prevedeva l’utilizzo di ordigni atomici nell’atmosfera terrestre ma solo nello spazio. L’uso della vela doveva permettere esplosioni a distanze maggiori che avrebbero richiesto piastre di scrematura più leggere, con una maggiore leggerezza complessiva della nave. Anche in questo caso, però, resta la difficoltà tecnica di realizzare una vela abbastanza grande e resistente (Fig.8).

Fig.8 Principio funzionamento MedusaSe il Medusa prevedeva l’utilizzo di una vela fisica, il progetto Mag Orion (Magnetic Orion) ipotizzava l’utilizzo di una vela elettromagnetica e la sostituzione della piastra di protezione, prevista nell’originale Orion, con un anello super conduttore di 2 km di diametro. Ovviamente anche in questo progetto esistono numerose difficoltà tecniche: la realizzazione di un anello super conduttore di così grandi dimensioni e un sistema per espellere le cariche esplosive ad alta frequenza lontano dal veicolo pongono problemi tecnici di difficile soluzione.

Il Mini Mag Orion (Miniature Magnetic Orion) nasce dall’idea di progettare una nave spaziale partendo dal Mag Orion, apportando le varianti necessarie per l’applicazione della tecnologia in uso (Fig.9): sostituzione delle cariche esplosive con materiale fissile come il curio e sostituzione dell’anello di 2 km di diametro con bobine disposte all’ugello magnetico di diametro 5 m. Il sistema teorico di propulsione prevede il Fig.9 Le parti del Mini Mag Orion(MMO)confinamento inerziale della massa critica necessaria all’esplosione atomica tramite un campo elettromagnetico simile a quello usato da vista. La velocità massima della nave potrebbe raggiungere i 100.000 Km/s. Anche quest’ultimo progetto appare solo un’ipotesi, in quanto ancora non è stato condotto un vero e proprio studio di fattibilità.

In conclusione, nonostante la varietà dei progetti successivi all’Orion, ad oggi il sistema che risponde ad un possibile criterio di fattibilità resta ancora l’originale, ovviamente da rimodulare in conseguenza dei vigenti trattati in materia di armamenti nucleari nello spazio, magari rendendo realizzabile l’assemblaggio di una nave come l’Orion in orbita ed utilizzando le più efficienti bombe H al posto di quelle a fissione.

LUCA DI BITONTO

Bibliografia

http://www.webcitation.org/5uzTHJfF7

http://www.projectrho.com/public_html/rocket/supplement/GA-5009vIII.pdf , p. 16 http://galileo.phys.virginia.edu/classes/109.jvn.spring00/nuc_rocket/Dyson.pdf, p. 37

http://www.projectrho.com/public_html/rocket/enginelist.php#minimagorion

http://galileo.phys.virginia.edu/classes/109.jvn.spring00/nuc_rocket/Dyson.pdf

http://www.phy6.org/stargaze/Inucfly.htm

http://www.damninteresting.com/the-daedalus-starship/

http://www.daviddarling.info/encyclopedia/D/Daedalus.html

http://www.damninteresting.com/the-daedalus-starship/

http://large.stanford.edu/courses/2012/ph241/klein2/docs/19890007533_1989007533.pdf

British Interplanetary Society, Journal (ISSN 0007-094X), vol. 46, no. 1, p. 21-26( http://adsabs.harvard.edu/abs/1993JBIS…46R..21S)

http://ralph.open-aerospace.org/PDF/2003.01.23%20-%20MMO%20Final%20Report%20Summary.pdf

12 marzo 2014 Posted by | Astronautica, Volo Interstellare | , , , , , | Lascia un commento

Eric W. Davis e gli ingegneri dello spazio-tempo

Eric W Davis 2008Leggere la biografia professionale di Eric W. Davis (molto meglio che il burocratico curriculum vitae, no?- nella foto: EWD), è come partire per un viaggio interstellare e il senso del termine “fisica esotica” diventa più familiare. Prendere una carta degli USA, segnare in ordine cronologico con un puntino tutti i luoghi in cui Eric ha partecipato a un convegno, presentato relazioni, tenuto conferenze, organizzato seminari, e poi unirli con una linea continua sarebbe come disegnare la rotta della prima nave interstellare e la storia del movimento che si prefigge di ingegnerizzare lo spazio-tempo per sviluppare il volo Faster-Than-Light, aggirando e non confutando Einstein. Si tratta senza dubbio della sfida intellettuale del secolo, dalla quale un numero sempre più grande di ricercatori si sente attratto.

warp Eric è socio della British Interplanetary Society e socio aggiunto dell’American Institute of Aeronautics & Astronautics, e di recente ha pubblicato, a quattro mani con Marc Millis, il libro Frontiere delle Scienze della Propulsione. Suo mentore per tutta la vita è stato Bob Forward, noto fisico e scrittore di fantascienza. Eric si è guadagnato un Ph.D. in astrofisica dall’Università dell’Arizona (1991) e la sua tesi di laurea era dedicata al campo magnetico di Giove, mentre lavorava alle missioni Voyager 1 e 2, conferendogli solide basi teoriche nel campo della fusione nucleare e della fisica del plasma. Ha ricevuto anche un B.Sc. In fisica e matematica dall’Università dell’Arizona (1983) e un A.A. in arti liberali dal Phoenix College (1981). Eric ha altre esperienze di missioni spaziali incluso IRAS, per ricerche nell’infrarosso (1984-85), ASUSat-1 (1990) e ricognizione del teatro spaziale nella Corea del Sud (USAF & US Forces Korea, 1995-1996).

La specializzazione attuale di Eric include la fisica della propulsione avanzata, la Relatività Generale e le teorie sul campo quantico, la ricerca di esseri extraterrestri intelligenti (SETI), l’esplorazione automatica del Sistema Solare esterno e l’ingegneria delle missioni spaziali. Eric è attualmente impiegato come Fisico Ricercatore Anziano all’Istituto per gli Studi Avanzati di Austin, è anche un Ricercatore Capo  in Metriche del motore a curvatura e ha fornito servizi a contratto al Laboratorio di Ricerca dell’Air Force, al Dipartimento della Difesa, al Dipartimento dell’Energia e a l’Istituto per le Idee Avanzate e la NASA. Ha fornito inoltre contributi tecnici e consulenze al Programma per la Fisica della Propulsione Avanzata della NASA.

100yss representatives(nella foto i rappresentanti del 100yss al Parlamennto Europeo) Eric è l’autore di una premiata ricerca scientifica sul quantum vacuum zero-point energy (Space Technology & Application International Forum 2007), e di parrecchi altri lavori sui wormholes (volgarmente detti Stargates), motori a curvatura, propulsioni laser, fisica del teletrasporto, e concetti di propulsione avanzata. Ha ricevuto due volte riconoscimenti dall’Istituto Americano di Aeronautica & Astronautica per contributi straordinari alla Difesa Nazionale. Eric è membro della New York Academy of Sciences, della American Astronomical Society, della Directed Energy Professional Society, ed è stato membro dell’ormai defunto American Institute of Beamed Energy Propulsion. Eric fa anche parte del comitato consultivo della Fondazione Tau Zero e del consiglio internazionale di redazione del Journal of the British Interplanetary Society.

Durante il Congresso di fondazione del movimento 100YSS nell’autunno del 2011, Eric tenne uno dei suoi interventi più attesi, intitolato: Faster-Than-Light Space Warps, Status and Next Steps. Walter Risolo ha tradotto per noi l’abstract di quel memorabile intervento. Il documento completo è riprodotto nel JBIS vol.66 #3/4 (marzo-aprile 2013).

warp-drive-possible-nasa-tests-100yss-120917-676932-“L’attuazione di viaggi interstellari più veloci della luce (FTL) tramite cunicoli spazio temporali attraversabili o motori a curvatura richiede l’ingegnerizzazione dello spazio-tempo in geometrie locali molto specializzate.

L’analisi di questi cambiamenti con la teoria generale della relatività di Einstein dimostra che tali geometrie richiedono l’uso di materia “esotica”.

Si può ricorrere alla teoria quantistica dei campi per trovare sia le origini naturali che fenomenologiche della materia esotica. Tali campi quantistici sono perturbati dalla geometria dello spazio-tempo curvo che essi producono, quindi il loro tensore energia-impulso può essere usato per sondare la retroazione degli effetti del campo sulla dinamica dello spazio-tempo FTL, che ha implicazioni sulla costruzione ed il controllo dello spazio-tempo FTL. Inoltre, la produzione, rilevazione, e la distribuzione dei campi quantistici naturali esotici sono visti come sfide tecniche in cui possono essere adottati i primi passi base per indagare sperimentalmente le loro proprietà. Gli spazi-tempo FTL possiedono anche caratteristiche che mettono in discussione i concetti di conservazione della quantità di moto e della causalità.

In questa relazione viene affrontato lo stato di questi importanti temi, e sono identificati i prossimi passi raccomandati per ulteriori indagini teoriche in uno sforzo per chiarire una serie di incertezze tecniche e far progredire l’attuale stato dell’arte nella fisica dello spazio-tempo FTL .”

 ROBERTO FLAIBANI

 

21 dicembre 2013 Posted by | Astrofisica, Astronautica, News, Scienze dello Spazio, SETI, Volo Interstellare | , , , , , , , , , | 2 commenti

Civiltà aliene: due modelli in competizione

Le speculazioni sull’esistenza di civiltà extraterrestri analoghe alla nostra cadono naturalmente in due campi, che per convenienza possiamo descrivere come modello dello Stato Stazionario opposto al modello Big Bang (da non confondersi con le omonime teorie cosmologiche). C’è anche un modello ibrido che combina gli altri due alla maniera hegeliana (tesi – antitesi – sintesi).

Da bravo appassionato di Jazz (gli anni 50 e i primi 60 sono il periodo che preferisco), non mi è sfuggito che Stephen Ashworth, un frequente commentatore e collaboratore di Centauri Dreams, è anche un suonatore di sax tenore che si esibisce regolarmente nella zona di Oxford, in Inghilterra. Stephen è inoltre un acuto scrittore di cose che riguardano il nostro futuro nello spazio non solo attraverso il suo lavoro nel Journal della British Interplanetary Society, ma anche nel suo sito chiamato “Astronautica Evolution”, dedicato allo studio di “una base politica e sociale per una società ottimista, progressiva e astronautica, presente e futura”. Nell’articolo che segue, Stephen osserva modi diversi di concepire l’intelligenza extraterrestre, che propongono modelli differenti di emersione e disseminazione della vita nell’Universo. (Paul Gilster)

Il modello dello Stato Stazionario

Questo modello si rifà alla famosa equazione di Drake. Drake supponeva che per lungo tempo nel passato, e altrettanto nel tempo a venire, le civiltà sarebbero apparse, avrebbero compiuto il loro ciclo, e sarebbero poi sparite di nuovo. Il problema che lo interessava era se il tasso di visibilità delle civiltà capaci di comunicazioni radio interstellari e la loro longevità media erano grandi abbastanza da rendere statisticamente probabile per l’Umanità stabilire un contatto con un società aliena sorta nelle vicinanze, prima che la nostra civiltà o l’altra si estinguessero.

Drake considerava qualsiasi civiltà come fenomeno del tutto sedentario o statico. Perciò le posizioni dove potrebbero essere trovate oggi sono sempre le stesse in cui si erano evolute originariamente dai loro antenati biologici, e quindi molto simili alla Terra. Le civiltà dovevano trovarsi su pianeti orbitanti intorno a stelle simili al Sole, in orbite circolari vicine ad esso, nella zona chiamata abitabile (i pianeti al di fuori di questa zona, in cui l’acqua in forma liquida è rintracciabile in superficie, erano presumibilmente abitati solo da creature incapaci di sviluppare la radio astronomia, o di cambiare la chimica atmosferica… tanto più su pianeti privi dell’atmosfera stessa, ed erano quindi non rilevabili astronomicamente).

diagramma1

il diagramma 1 mostra schematicamente quante civiltà esistono in ogni istante nella Galassia secondo il modello dello Stato Stazionario. Per semplicità si assume che ogni sistema stellare possa ospitare una sola civiltà o nessuna. Il numero totale delle stelle continua ad aumentare lentamente mano a mano che le longeve stelle nane sono aggiunte alla popolazione. Il numero delle civiltà sale un po’ più velocemente quando i pianeti longevi entrano in gioco. Ci troviamo ora al punto A sull’asse del tempo. Il numero di stelle occupate in ogni momento è una piccola frazione del totale (il diagramma esagera la frazione per chiarezza). Per esempio, se noi condividessimo la Galassia con un milione di altre civiltà nel momento attuale, come gli ottimisti potrebbero sperare, allora solo 0,00001 dei sistemi stellari sarebbe correntemente occupato. Tutte queste civiltà vedono la luce indipendentemente l’una dall’altra. Le civiltà estinte non sono rimpiazzate sul loro pianeta di origine, ma lo sono da altre civiltà che nascono altrove. Le civiltà sono distribuite a caso attraverso la Galassia, sebbene Gonzalez, Brownlee e Ward abbiano aperto la discussione sul perché il centro e la periferia galattica potrebbero essere meno ospitali, contrariamente a un anello di pianeti parzialmentre fuori dal centro, dove infatti si trova oggi il Sistema Solare.

Le civiltà rimangono completamente dipendenti dal loro pianeta di origine, e la distanza tra i pianeti più vicini o più vicini a casa (forse decine di anni-luce, ma anche di più: nella loro relazione del 1984 sulle astronavi-arca Martin e Bond parlavano di 140 anni-luce) impedisce la colonizzazione interstellare.

Il modello Big Bang

Nel suo libro Contact with Alien Civilisations, Michael Michaud riesamina l’idea di un certo numero di persone, tra cui Freeman Dyson e Seth Shostak, che erano andate concettualmente oltre l’equazione di Drake, tenendo conto delle possibilità di colonizzazioni interstellari. Una visione simile è stata fatta propria da Ian Crawford, che in un articolo su Scientific American di qualche anno fa discuteva la prospettiva di una civiltà dinamica che colonizzava l’intera Galassia saltando da una stella all’altra. Usando tecnologie oggi concepibili (per esempio un razzo a fusione nucleare), un’ondata di coloni di una civiltà in espansione della nostra Galassia può impiegare 1000 anni per compiere un salto di 5 anni luce (cioè, viaggiare per 500 anni a 1% della velocità della luce, poi spendere altri 500 anni per costruire sufficienti infrastrutture per poter eseguire un altro salto). Dato che la Galassia misura circa centomila anni luce di diametro, quella civiltà potrebbe distribuire civiltà satelliti in ogni sistema stellare adatto entro 20 milioni di anni. Questo, comunque, rappresenta lo 0,2% dell’età della Galassia. L’introduzione di navi più veloci non farebbe nessuna differenza: anche senza il motore a curvatura o il movimento FTL, su una scala del tempo cosmologica una tale transizione da civiltà “in nessun posto” a civiltà “in qualsiasi posto” è, come dimostrato da Crawford, essenzialmente istantanea. Per molto tempo allora, la Galassia risulta completamente vuota di ogni forma di vita intelligente. Ma ecco che un’unica civiltà appare e si espande in tutta la Galassia in una fiammata espansionistica che noi chiamiamo Big Bang. Di conseguenza, i luoghi in cui la vita intelligente e tecnologica può essere rintracciata sono praticamente tutte colonie, e questa vita è ubiqua e permanente.

diagramma2

Il diagramma 2 mostra schematicamente quante civiltà esistono in ogni momento nella Galassia secondo il modello Big Bang. Se l’Umanità è sola, allora ci troviamo al punto B. Ma c’è una possibilità, per quanto piccola, che un’altra civiltà nella nostra Galassia sia, diciamo, solo un milione di anni più avanti a noi, e che non abbia ancora colonizzato la nostra parte della Galassia, nel qual caso siamo al punto C.

In contrasto con il modello delle Stato Stazionario, in cui i sistemi stellari sono occupati a caso, qui lo sono da colonie contenute in una bolla di espansione centrata sul pianeta di origine della prima civiltà. Due o più bolle di questo tipo possono apparire, ma solo se due o più civiltà indipendentemente compiono il salto tecnologico che apre le porte della colonizzazione dello spazio entro 20 milioni di anni l’una dall’altra, cosa molto improbabile in qualsiasi galassia. Una volta che il Big Bang è completato, il numero di sistemi stellari occupati ad ogni istante è una larga frazione del totale, includendo virtualmente tutte le stelle della sequenza principale, quindi certamente sopra lo 0,9 del totale.

Le colonie appartenenti alle civiltà collassate sono facili da riconoscere tra le altre. In realtà, ogni singola civiltà può collassare (proprio come ogni singolo individuo di una popolazione può morire) ma fino a quando ogni civiltà riesce a dar vita a più di una colonia nel corso della sua esistenza, la popolazione galattica continua a crescere.

La civiltà originaria lascia velocemente il suo pianeta di partenza e adotta una nuova modalità spazio-coloniale che permette ai suoi membri di prosperare in tutti i sistemi stellari stabili utilizzando risorse di origine planetaria o asteroidale. Da una parte, ciò riduce la lunghezza del viaggio interstellare per queste specie, dall’altra le prepara alle condizioni di viaggio tipiche delle astronavi-arca. Ma tutte le civiltà che evolvono dopo il Big Bang (a meno che non appaiano quasi simultaneamente ad esso, nelle vicinanze del punto C sul Diagramma), crescono in un ambiente dominato dalla locale colonia della civiltà originaria.

Le loro modalità di accesso al trasporto spaziale potrebbero essere analoghe a quelle che un popolo tribale oggi sulla Terra può o non può dover sviluppare nei confronti dell’attuale tecnologia dei consumi, del potere finanziario e della rete dei trasporti.

L’equazione di Drake

Si deve sottolineare con forza che la famosa equazione di Drake, con la sua stringa di fattori probabilistici da moltiplicare l’uno con l’altro, si applica solo nel caso del modello dello Stato Stazionario. Se, al contrario, la colonizzazione interstellare è il risultato dell’emersione di una civiltà tecnologica in una Galassia non sviluppata, allora l’equazione di Drake assume la seguente forma semplificata:

se T<TB (cioè il tempo al punto B del diagramma), allora il numero di civiltà è uguale a zero (N=0)

se T=TB , allora N=1

se T=TB + poche decine di milioni di anni, allora il valore di N cresce rapidamente

se T=TB + poche decine di milioni di anni, e poi in avanti per il resto della vita della Galassia, il valore di N è più o meno pari al numero di sistemi stellari adatti a ospitare una civiltà tecnologica.

Data la relativa brevità dello stadio di Big Bang, e la presenza di molti fattori sconosciuti che governano l’espansione della civiltà da un solo sistema stellare a molti, sarebbe utile cercare di raggiungere la massima precisione possibile nella stima di crescita per lo stadio 3.

Il Modello Ibrido

E’ possibile combinare questi modelli contrastanti in un singolo modello ibrido se qualche civiltà emergente riesce a raggiungere il livello tecnologico della radioastronomia, ma non a sviluppare il viaggio interplanetario e di conseguenza la colonizzazione dello spazio interstellare.

diagramma3

Il diagramma 3 mostra quante civiltà esistono nello stesso istante nella Galassia, secondo il modello ibrido. Se la nostra civiltà collassa prima che noi si riesca a stabilire colonie extraterrestri allora siamo al punto A, se invece abbiamo successo nell’espansione spaziale allora siamo al punto B; in ambedue i casi, è difficile che si riescano a trovare partner per la conversazione interstellare. Il livello di sviluppo al quale dobbiamo arrivare per utilizzare la radioastronomia non è di per se sostenibile a lungo termine, lo definirei piuttosto uno stadio intermedio instabile. Una volta arrivata al punto di avere la radioastronomia, una civiltà potrebbe completare la transizione verso lo spazio entro pochi secoli, oppure collassare completamente.

Ciò significa che la longevità di una società che ha cercato di stabilizzarsi a quel livello sarebbe molto ridotta, certamente meno di mille anni; il numero di tali civiltà presenti in qualsiasi momento sarebbe quindi altrettanto piccolo, e la distanza minima oltre alla quale ogni messaggio avrebbe dovuto essere scambiato inversamente grande, rendendo improbabile ogni comunicazione soddisfacente.

(Se ci fossero nella Galasia ad ogni istante almeno 1000 civiltà, per esempio N=L nella equazione di Drake dopo che tutti gli altri fattori si erano approssimativamente compensati l’un l’altro, e 1011 stelle nella Galassia, allora per un intervallo medio tra una stella e l’altra di 5 anni luce, tra ogni civiltà tecnologica e l’altra ci sarebbe stato un intervallo medio di 2000 anni luce. Il tempo d’attesa tra la spedizione della domanda e l’arrivo della risposta sarebbe più grande della durata della vita delle due civiltà).

Cosa possiamo dire del punto D del diagramma? Se la posizione dell’Umanità fosse proprio su quel punto, corrisponderebbe a uno scenario in cui la Galassia è dominata da una o più specie aliene, della cui esistenza noi siamo del tutto inconsapevoli. Sebbene ciò sia possibile in linea di principio, non è però soddisfacente dal punto di vista scientifico, perchè introduce nuova complessità nella immagine che ci siamo fatti dell’universo, senza però fornire nuovi dati utili alla interpretazione delle osservazioni. Piuttosto che ipotizzare l’esistenza di una cultura aliena avanzata, e poi quella di un meccanismo che nasconda la sua immagine alla nostra vista, e la sostituisca con quella di una Galassia apparentemente incontaminata da qualsiasi forma di civiltà, è più conveniente supporre che l’apparente isolamento nella Galassia sia reale, fino a prova contraria.

La questione della longevità

Considerate le moderne paure a proposito di guerra nucleare, prezzo della benzina, degenerazione dell’ambiente e della società, disastri tecnologici, mutazione del clima e terrorismo, condite con una forte dose di rimorso post-coloniale e disgusto per se stessi. Per molta gente è contrario al buon senso pensare che una civiltà come la nostra potrebbe diventare un dato permanente dell’universo.

Qual’è la lezione che riceviamo dall’evoluzione della vita nel passato? Prima di tutto deve essere riconosciuto che l’umanità industriale è cosi differente dai nostri antenati pre-industriali, quanto loro lo erano dagli organismi monocellulari precambriani. A meno che non si obietti che una scienza e una tecnologia come queste siano in qualche modo innaturali, un’aberrazione dell’ordine naturale dato da Dio, allora i fatti devono essere riconosciuti: un nuovo tipo di vita è emerso con capacità mai viste prima, inclusa quella di arrivare su altri corpi celesti, e di fare una selezione del materiale grezzo trovato sul posto. Ciò non era mai stato possibile prima, salvo che nei casi marginali di piccoli numeri di batteri scambiati casualmente tra Marte e Terra.

Il cammino dell’evoluzione fa sì che da ciascun livello biologico si possa accedere a quello immediatamente superiore, fondendosi con esso: quindi dalle cellule procariotiche a quelle eucariotiche, alla vita multicellulare, a quella tecnologica (detto con parole mie: microbiota, gaiabiota, tecnobiota – n.d.a.). Non appena appare un nuovo livello di complessità, il livello precedente persiste in simbiosi con esso. Inoltre, la vita batterica non sopravviverà quando Marte e Terra verranno completamente bruciati dal Sole,  nel momento in cui entrerà nella sua fase di gigante rossa. Se la nostra civiltà soddisferà in pieno il proprio potenziale, allora questi organismi meno complessi continueranno a vivere e prosperare a lungo dopo la morte del Sole, insieme ai loro discendenti. Il percorso dell’evoluzione suggerisce non solo che la nostra civiltà tecnologica produrrà un suo successore di qualche tipo a un più alto livello di complessità, ma anche che non si estinguerà dopo che il suo successore si sarà adeguatamente installato.

E’ chiaro che la nostra società sta attraversando un periodo di rapida transizione, non ancora ben delineato. Sta ancora sperimentando rivoluzioni tecnologiche e sociali, non ha ancora raggiunto la sua forma finale ed è ancora una monocultura. Solo quando sarà maturata tecnologicamente e comincerà a diversificarsi in una varietà di luoghi nel Sistema Solare, e magari presso i sistemi stellari più vicini, sarà possibile dire che la civiltà è finalmente arrivata. Quando sarà giunta in piena fioritura, i suoi settori più dinamici si spargeranno certamente tutt’intorno perché, a prescindere da cause ben precise, è quello che la vita ha sempre fatto. Alla domanda: ”dove si possono trovare i batteri sulla Terra”? La risposta è: “da nessuna parte”, se facciamo riferimento a un imprecisato periodo di tempo sulla Terra primordiale. A questo punto c’è il Big Bang, una relativamente breve esplosione di vita batterica, e quindi la risposta al quesito diventa: “ovunque”. La nostra società industriale deve ancora sperimentare l’equivalente del Big Bang batterico o dell’esplosione cambrianica di 550 milioni di anni fa, quando nacque una pletora di nuovi e diversi organismi multicellulari, e ciascuno prese la sua strada. Ciò richiede che i nostri discendenti si espandano su scala interplanetaria e alla fine interstellare. Quando loro lo faranno, o qualche altra civiltà lo farà al loro posto se loro non lo avranno già fatto, e se la vita si svilupperà nel futuro come ha fatto nel passato, allora la civiltà diventerà certamente una caratteristica ubiqua e universale della Galassia per quanto possiamo vedere lontano nel futuro.

Rispondere al paradosso di Fermi

Questo tema è stato discusso nei particolari lo scorso dicembre nel blog I4IS. In breve la questione è: come mai nessuna civiltà aliena è ancora arrivata da noi partendo da un punto qualsiasi, dato che l’universo è popolato di sistemi stellari con pianeti simili alla Terra, ed è circa tre volte più vecchio del Sistema Solare?

La ragione per cui la gente ritenga questo un problema, e si riferisca ad esso come a un paradosso, è che la gente è ormai “sposata” a una visione tradizionale iniziata con Darwin, cioè che la vita si è evoluta chimicamente sulla Terra, in un piccolo stagno caldo, o in un pezzo di argilla umida, o in uno sfiato idrotermale. Se è stato proprio questo il caso, allora dato che la vita si è evoluta entro circa 300 milioni di anni dopo la fine dell’Intenso Bombardamento Tardivo (secondo il Modello di Nizza, l’evento ha avuto luogo nel Sistema Solare tra 3,8 e 4,1 miliardi di anni fa – n.d.t.), avrebbe dovuto fare la stessa cosa in moltissimi altri pianeti, miliardi di anni prima.

Ma Robert Zubrin fa centro sostenendo che c’è un enorme salto di complessità tra il più semplice batterio noto alla scienza e la molecola più complessa che può essere sintetizzata in laboratorio. Qualche forma di vita proto-batterica deve aver preceduto la vita come noi la conosciamo. Ma non ci sono prove di vita proto-batterica sulla Terra. Questo, a mio avviso, è un’importante prova che, contrariamente al punto di vista generalmente accettato, la vita non evolve da sostanze non viventi su pianeti simili alla Terra. Coloro che credono nella teoria tradizionale sostengono che i proto-organismi, che compaiono in seguito all’evoluzione delle cellule batteriche, vengano rapidamente divorati da esse. E’ plausibile questo? Gli organismi monocellulari non vengono eliminati dall’ambiente da quelli pluricellulari; essi sono ovunque. Le proto-cellule non verrebbero trovate ovunque in numero enormemente superiore a quello delle cellule, come queste a loro volta sono molto più numerose degli animali pluricellulari? I biologi osserverebbero allora una catena continua di organismi per tutto il loro sviluppo fino alla più piccola molecola capace di autoriprodursi.

L’ovvio scenario alternativo presenta l’emersione della vita prima in un ambiente in microgravità, qualcosa come un nucleo di cometa, comunque un avvenimento molto raro. C’è stato un certo interesse intorno alla Sperimentazione della crescita di proteine in microgravità nella Stazione Spaziale Internazionale: forse la mancanza di gravità è essenziale per un primo passo nel processo di sviluppo della prima molecola autoreplicante. Ma anche se la prima fase di abiogenesi necessita per aver luogo di un mondo di tipo terrestre, potrebbe anche accadere così raramente che non ci sarebbe nemmeno il tempo di produrre vita pluricellulare in un solo mondo, se non dando un vantaggio alla Terra attraverso la disseminazione nello spazio dei materiali originatisi per impatto.

Questo disconnette l’emersione iniziale dalla successiva evoluzione in organismi multicellulari, consente un periodo all’incirca 100 volte più lungo per completare il salto di complessità iniziale, spiega perchè i proto-batteri non sono stati mai trovati sulla Terra e inoltre aumenta i requisiti richiesti per un già poco probabile trasferimento spaziale da attuarsi prima che l’evoluzione verso gli organismi multicellulari possa incominciare, spingendo il Big Bang della vita tecnobiotica verso la parte destra del diagramma.

Ma non troppo a destra. Per tutti quelli che reputano 13,7 miliardi di anni (l’età dell’universo convenzionalmente accettata) essere un periodo di tempo oltre ogni immaginazione, l’universo è ancora giovane. Giudicando dalla durata delle stelle più longeve, le nane rosse, l’universo continuerà a contenere stelle e pianeti come noi li conosciamo per un periodo dell’ordine di decine di milioni di miliardi di anni a venire, sebbene le stelle più luminose saranno scomparse molto tempo prima. Se l’universo forse un essere umano sarebbe ancora come un bambino di un mese.

C’è un altro fattore che può avere una parte nel gioco. Carl Sagan ha descritto come la moderna mania dell’incontro con gli alieni (o meglio, di un rapimento effettuato dagli alieni) perpetua il fenomeno dell’incontro con gli angeli, i demoni e Maria Vergine, in uso nei secoli passati. L’inondazione di speculazioni sulle civiltà aliene (Dove sono? Sono amici o nemici?) potrebbe essere forse l’equivalente moderno della ricerca di Dio? La gente comune brama ancora di essere sottomessa a un Superno (Overlord in inglese – il nome dato agli alieni da Arthur Clarke nel suo libro “Le Guide del Tramonto” (Childhood’s End)), sia esso benevolo o pronto a punirci? Fino a quando non troviamo nessuna prova di intelligenza aliena, la spiegazione più semplice sarà che non c’era dove abbiamo guardato, come dire che nel mio garage non c’è nessun drago invisibile (un’immagine cara a Carl Sagan). Dobbiamo quindi guardare più avanti in attesa che sia possibile utilizzare nuove osservazioni per escludere uno dei modelli descritti qui.

Traduzione di ROBERTO FLAIBANI

Titolo originale “Alien Civilisation: Two Competing Models”   ” di Stephen Ashworth

pubblicato il18 settembre 2013 Astronautica Evolution e anche in Centauri Dreams

FONTI:

Ian Crawford, “Where Are They?”, Scientific American, July 2000, p.28-33.

Guillermo Gonzalez, Donald Brownlee and Peter D. Ward, “Refuges for Life in a Hostile Universe”, Scientific American, October 2001, p.52-59.

Michael A.G. Michaud, Contact with Alien Civilisations (Copernicus, 2007).

Carl Sagan, The Demon-Haunted World: Science as a Candle in the Dark (Headline, 1997); Contact (Century Hutchinson, 1986).

Robert Zubrin, “Interstellar Panspermia Reconsidered”, JBIS, vol.54, no.7/8 (July/August 2001), p.262-269.

5 novembre 2013 Posted by | Astrofisica, Astronautica, Radioastronomia, Scienze dello Spazio, Senza categoria, SETI, Volo Interstellare | , , , , , | 3 commenti

Propulsione e comunicazione

Comincia qui, sommessamente, un lavoro che noi del Tredicesimo Cavaliere riteniamo impegnativo e interessante. Si tratta della traduzione in lingua italiana degli abstract degli articoli pubblicati negli ultimi anni a cura della British Interplanetary Society  (BIS), la prestigiosa ONG dello spazio da qualche mese presente nel nostro paese con la sua branch, BIS Italia. Gli articoli completi, in inglese, continueranno a comparire invece sul Journal of the British Interplanetary Society (JBIS), il periodico che si occupa di Scienze dello Spazio dal particolare punto di vista “visionario” della BIS.

Sotto l’ala della DARPA, l’agenzia del Pentagono per l’alta tecnologia, è nato un paio di anni fa negli Stati Uniti il 100YSS, un movimento dedicato a costruire le fondamenta della complessa struttura  scientifica, tecnologica, economica e sociale che sarà necessaria per costruire e lanciare la prima astronave interstellare. Il movimento organizza ogni anno un congresso, e la BIS si è impegnata alla pubblicazione degli atti sul suo Journal, un impegno gravoso sia dal punto di vista qualitativo che quantitativo, a causa dell’approccio di tipo multidisciplinare che la natura stessa  del volo intestellare impone. Presentiamo oggi i primi due abstract preceduti da poche righe di introduzione.

Harold “Sonny” WhiteGli ingegneri rileggono  Einstein

IL dott. Harold “Sonny”  White ha ottenuto il Ph.D. in Fisica alla Rice University, il Master’s of Science in Mechanical Engineering alla Wichita State University, e un Bachelors of Science in Mechanical Engineering all’Università South Alabama. Il  Dr. White ha accumulato oltre 15 anni di esperienza lavorando nell’industria aereospaziale con Boeing, Lockheed Martin, e NASA. Attualmente presta servizio come Advanced Propulsion Theme Lead per l’Engineering Directorate della NASA ed è il rappresentante del JSC presso il Nuclear Systems Working Group. Sta inoltre conducendo, a livello teorico e in laboratorio, ricerche sulla  fisica della propulsione avanzata, presso il laboratorio Eagleworks nel Johnson Space Center della NASA.

La meccanica della curvatura di campo

Questo lavoro inizia con una breve recensione della metrica della propulsione a curvatura di Alcubierre e descrive come il fenomeno potrebbe funzionare in base al progetto originale.
La forma canonica della metrica è stata sviluppata e pubblicata in “A Discussion on space-time metric engineering”, Gen. Rel.Grav., 35, pp.2025-2033, 2003, e ha fornito una chiave di lettura del campo di potenziale e di spinta attraverso il campo, che ha risolto un paradosso cruciale nel concetto originale del funzionamento come enunciato da Alcubierre. Viene presentato e discusso un concetto modificato del funzionamento sulla base della forma canonica della metrica che risolve il paradosso. Sarà successivamente considerata brevemente l’idea di un motore a curvatura in uno spazio-tempo a più dimensioni (manifold) confrontando le geodetiche null-like della metrica di Alcubierre con la metrica di Chung-Freese per illustrare il ruolo matematico delle coordinate nell’iperspazio.
L’effetto netto di utilizzare una “tecnologia” con motore a curvatura accoppiato con sistemi convenzionali di propulsione in una missione di esplorazione, sarà discusso usando la terminologia di una missione pianificata precedentemente.
Infine sarà descritta nei dettagli una panoramica del test interferometrico di un campo di curvatura in corso di attuazione nel Laboratorio di Fisica della Propulsione Avanzata: Eagleworks (APPL:E) presso il Johnson Space Center della NASA.
Sebbene la meccanica della curvatura di campo non abbia avuto un momento di “Chicago Pile” (ll primo esperimento di reattore nucleare n.d.t.), gli strumenti necessari per individuare un modesto esempio del fenomeno sono a portata di mano.

Titolo originale: WARP field mechanics 101
Autore: Harold “Sonny” White – NASA Johnson Space Center – Houston
Traduttore: Walter Risolo, Editor: Roberto Flaibani, Massimo Mongai
Journal of the British Interplanetary Society, vol 66, n. 7-8 July-August 2013
100YSS Symposium 2011 – TIME DISTANCE SOLUTIONS Section

gilster_02Lo scrittore e l’astronave

Paul Gilster è uno scrittore a tempo pieno specializzato in tecnologia spaziale e sue implicazioni. E’ uno dei fondatori della Tau Zero Foundation, dove svolge funzione di capo redattore. Gilster è autore di sette libri, tra cui Digital Literacy (John Wiley & Sons, 1997) e Centauri Dreams: Imagining and Planning for Interstellar Flight (Copernicus, 2004), uno studio sulle tecnologie che potrebbero un giorno rendere possibile l’invio di una sonda fino alla stella più vicina. Gilster segue gli ultimi sviluppi nella ricerca interstellare, dalla propulsione agli studi sugli esopianeti, nel suo sito web Centauri Dreams. In passato, Gilster ha collaborato con numerose riviste di tecnologia e di affari, e ha pubblicato saggi, articoli, recensioni, narrativa, in un gran numero di pubblicazioni sia interne che esterne ai settori spazio e tecnologia. Inoltre da 23 anni scrive regolarmente una rubrica di informatica che appare sul The News & Observer (Raleigh, NC). Gilster si è laureato presso il Grinnell College (IA) e ha fatto sei anni di specializzazione in letteratura medievale inglese al UNC-Chapel Hill, prima di dedicarsi all’aviazione commerciale e infine alla scrittura.

La Visione Interstellare: i principi e la  pratica

Il titolo ambizioso dello studio “100 Year Starship” echeggerà presso il pubblico, un fatto che richiederà al destinatario della sovvenzione DARPA l’uso di una comunicazione che possa seguire una attenta strategia su come portare questa visione su Internet e gli altri punti di visibilità. Tutto ciò sarà necessario per stimolare l’impegno pubblico e sostenere il ‘mormorio’ che aiuterà l’organizzazione a sviluppare le proprie idee.
Questo documento esamina tali problematiche nel contesto del lungo coinvolgimento dell’autore con “I sogni del centauro”, un sito web dedicato alla presentazione del volo interstellare ad un pubblico ampio e generico.
Elementi centrali per la presentazione dell’idea della nave stellare sono il sostenere il valore del  pensiero a lungo termine ed il valore della ricerca di spin-off, ponendo l’obiettivo di una nave stellare nel contesto di altre attività umane che hanno avuto la capacità di trascendere la vita dei singoli partecipanti.
Insegnare responsabilità intergenerazionale implicherà  approfondire temi di storia, economia e filosofia, oltre alle questioni tecnologiche sollevate da un viaggio di questa portata. I migliori comunicatori per questo ruolo saranno dei comunicatori generalisti che possano collegare discipline così lontane fra loro La chiave per lo studio è lo sviluppo di una presenza Web che utilizzi Internet con cautela. Alcuni miti di Internet tra cui ‘la saggezza delle folle’ e la ​​resistenza ad un condizionamento dall’alto comprometterebbero il progetto. E’ in questo contesto che saranno discussi i vantaggi e gli svantaggi dei social network . È essenziale la presenza di una voce editoriale forte disposta a selezionare le pubbliche risposte per poter mantenere degli standard elevati nelle discussioni che seguiranno.
Inoltre, un elevato standard di articoli richiede la presentazione delle ricerche senza troppo clamore  e un livello di discorso che educhi, ma non condizioni il suo pubblico. Un’accurata citazione delle ricerche attinenti e la volontà di impostare alto il livello della discussione comporterà una risposta dai ricercatori e dal pubblico che, con l’aiuto di una continua e costante  moderazione, costruirà una banca dati di idee di terze parti in grado di suscitare l’interesse e aggiungere materialmente valore alla ricerca globale

Titolo originale: The Interstellar Vision – Principles e Practice
Autore: Paul A. Gilster – Tau Zero Foundation – Centauri Dreams blog
Traduttore: Walter Risolo, Editor: Roberto Flaibani, Massimo Mongai
Journal of the British Interplanetary Society, vol 66, n. 7-8 July-August 2013
100YSS Symposium 2011 – COMMUNICATION OF THE VISION Section

16 ottobre 2013 Posted by | Astrofisica, Astronautica, Scienze dello Spazio, Volo Interstellare | , , , , , , , | Lascia un commento

BIS-Italia a Frascati con i ricercatori

BIS-Italia miniaturaSi concludono gli appuntamenti di Frascati Scienza. Dal 21 al 27 settembre la settimana è stata carica di incontri per avvicinare il grande pubblico alla ricerca scientifica, ma più di tutto a chi ne ha fatto il proprio obbiettivo professionale, gli scienziati e i ricercatori.

La giornata inaugurale si era svolta in pieno centro di Roma, in Piazza in Lucina, con l’evento  “Ricerca i Ricercatori”: un invito e un auspicio a tenersi stretto il patrimonio di conoscenze e sapere, per contrastare la fuga dei cervelli dall’Italia e favorire le carriere professionali legate alla tecnologia, alla scienza e quindi al futuro.

Questa inusuale kermesse non può che concludersi con la “Notte Europea dei Ricercatori”, oggi 27 settembre. In questa occasione  l’Esa, l’Agenzia spaziale europea, aprirà le porte del proprio centro a Frascati. L’evento, che si svolge nello stesso giorno in 300 città europee, è organizzato dall’Unione Europea, e permette di esplorare a grandi linee il mondo della scienza, in particolare quello dell’esplorazione spaziale, con maggior riguardo alla figura professionale del ricercatore e dello scienziato.

Bis-Italia, la sezione italiana della British Interplanetary Society,  ha avuto modo di segnalare al pubblico le proprie attività in Italia. Tutti i membri della associazione possono fare riferimento a Bis Italia per eventi locali, notizie e riunioni. Lavorando a stretto contatto con Alistair Scott, Presidente della BIS britannica, e con il Consiglio della BIS, la sezione italiana ha aiutato a definire un insieme di regole per la gestione delle future sezioni internazionali. Lo stesso Scott, in un discorso recentemente tenuto a Pechino nel corso di attività collegate con il Congresso Internazionale di  Astronautica,  ha sostenuto la necessità, per la Bis del 21mo secolo, di fondare sezioni locali e ha citato l’esempio della Bis-Italia, la prima ad essere stata creata, nel febbraio di quest’anno, e già operativa dopo pochi mesi, con eventi e incontri.

“Crediamo nel ruolo che tali sezioni locali potranno avere nel futuro dell’associazione – ha detto Scott – e speriamo che i nostri soci non britannici comprendano il vantaggio di avere un gruppo sul loro territrio nel quale scambiare idee, esperienze e, in particolare, partecipare a progetti in vari ambiti. Stiamo anche pianificando una serie di attività educative e abbiamo l’obiettivo di partecipare ai principali eventi spaziali. Come soci, o ‘fellows’, della BIS, basta avere un indirizzo italiano per essere considerati membri della BIS Italia”.

La fondazione della British Interplanetary Society risale a prima della Seconda Guerra Mondiale. La sua mission è indirizzata alla esplorazione scientifica dello spazio, fornendo anche contributi innovativi sulla loro fattibilità scientifica.  Altre informazioni su BIS-Italia possono essere rintracciate nel sito internazionale, oppure sulla neonata pagina Facebook dell’associazione.

GIANVITTORIO FEDELE

27 settembre 2013 Posted by | Fantascienza, News, Scienze dello Spazio, Volo Interstellare | , , , , , , , , , | Lascia un commento

Cavalcare il vento solare

Il 7 maggio scorso è stato lanciato dallo spazioporto di Kourou un vettore Vega che ha seminato su varie orbite una manciata di piccoli satelliti. Uno di essi, denominato ESTCube-1, è veramente piccolissimo, misura infatti 10x10x11,35 cm. e pesa poco più di un chilo. In altre parole, si tratta di un tipico cubesat, ed è stato presentato come il primo satellite estone. Una volta salutati i simpatici studenti e tifosi Estoni come nuovi membri della costituenda spacefarer civilization, abbiamo archiviato la notizia e siamo andati a dormire, come sembra abbiano fatto perfino al Corriere della Sera. Salvo essere risvegliati di soprassalto, qualche ora dopo, dal frastuono dei corni da guerra dei blog spaziali americani: loro sì che avevano la vera notizia! E cioè che lo scatolino chiamato ESTCube-1 era in realtà il primo di una serie di test che avrebbe portato alla realizzazione, da parte di un consorzio d’imprese in area ESA, di un prototipo di vela solare elettrica nel giro di qualche anno. (RF)

 E-sailLo scatolino contiene un tether lungo 10 metri, cioè un cavo in alluminio dello spessore di soli 50 micron, che verrà srotolato molto lentamente nello spazio. Fatto questo, il tether riceverà una carica elettrica positiva grazie all’impulso di un cannonne elettronico e comincerà a interagire con gli ioni della magnetosfera terrestre. Lo studio di queste interazioni è alla base della teoria della vela solare elettrica e verrà approfondito nel corso di un secondo esperimento previsto per l’anno prossimo e denominato Aalto-1, in cui verrà usato un tether lungo 100 metri.

Pekka Janhunen, del Finnish Meteorolgical Institute, che guida fin dal 2006 il gruppo misto di scienziati estoni e finlandesi che si sono dedicati al progetto di vela solare elettrica, spiega che, una volta esaurita la fase di ricerca preliminare nella magnetosfera terrestre, sperano di arrivare entro il 2016 a varare un primo veicolo propulso da una vera vela solare elettrica in grado di produrre spinta utilizzando il vento solare e non la pressione della luce solare come fanno le tradizionali vele fotoniche tipo Ikaros.

Szames_sail La configurazione base di una E-sail dovrebbe comprendere un centinaio di tether da 25 micron, lunghi ciascuno 20 km. e un cannone elettronico ad alimentazione solare, in grado di mantenere l’intero sistema elettricamente carico ad un potenziale positivo pari a 20 kv. Con questi valori la vela, se applicata a un carico utile di una tonnellata, in un anno può raggiungere la velocità di 30 km/s, più del doppio di quella della sonda New Horizons, attualmene in rotta verso Plutone. Con carichi utili minori, missioni del genere potrebbero essere portate a termine in cinque anni raggiungendo velocità dell’ordine di 100 km/s. L’intensità del vento solare è variabile ma mediamente è cinquemila volte più debole di quella della radiazione solare che viene utilizzata dalla vela fotonica. Ciononostante la vela elettrica è ancora competitiva: un tether di 20 km arrotolato nel suo rocchetto pesa poche centinaia di grammi, costa pochissimo, è facile da dispiegare nello spazio, ma sopratutto è capace di produrre intorno a se, per svariati chilometri quadrati, un campo elettrico in grado di intercettare il vento solare. Inoltre Janhunen descrive nel suo sito tecniche e metodi per smorzare e contenere la variabilità nella densità e velocità delle particelle del vento solare, che costituisce il più serio problema al suo utilizzo.

 Molte interessanti missioni sono difficili da eseguire per veicoli con propulsione a razzo, sopratutto a causa ell’eccentricità o inclinazione delle orbite o della lontananza dei bersagli, la cosa invece non costituisce un problema per le vele solari che producono una spinta continuata e non necessitano di propellente. Tali considerazioni valgono tanto per le vele fotoniche che per quelle elettriche e sull’argomento i lettori possono leggere anche l’articolo Dopo Ikaros, dove? Segue una lista di possibili missioni ideali per le vele solari:

  • Pianeti, lune e asteroidi del Sistema Solare interno. E’ possibile ogni genere di missione: fly-by, rendez-vous, sample return, mining, deflection, ecc.

  • Asteroidi del Sistema Solare esterno (Cintura di Kuiper, Troiani di Giove, Centauri, Famiglia Hilda e altri). In pratica sono possibili solo missioni di fly-by: data la grande distanza dal Sole, la vela non riceverebbe abbastanza energia per decelerare ed eseguire manovre in prossimità del bersaglio.

  • Pianeti e lune del Sistema Solare esterno. Si potebbe costruire una grande astronave-madre a vela, capace di trasportare parecchie sonde specializzate (orbiter, lander, rover, jumper, ecc.) da sganciare in prossimità di bersagli predeterminati. tab1 (Tabella della durata del volo verso i giganti gassosi, calcolata per tre diversi carichi utili)

  •  Missione Data Clipper. Al giorno d’oggi non è difficile costruire strumenti scientifici che raccolgano una gran quantità di dati in poco tempo, e le nuove tecnologie di immagazzinamento rendono possibile il loro stoccaggio in dispositivi minuscoli, leggeri ed economici. Ciò che manca, invece, è la larghezza di banda per il download dei dati su distanze interplanetarie. Si potrebbero quindi costruire dei piccoli veicoli spaziali a vela solare dedicati a riportare fisicamente i dati in prossimità della Terra, da dove possano essere trasmessi con poca spesa, consentendo così di ridurre notevolmente i costi per le telecomunicazioni nel bilancio della missione.

  •  Viaggi interstellari. Janhunen ha ammesso in passato di non vedere nessuna applicazione della e-sail in questo campo, se non una sola, importantissima: decelerare quando l’astronave entra in contatto con il vento solare della stella di destinazione.

ROBERTO FLAIBANI

Fonti:

  •  IEEE Spectrum, ELECTRIC SPACE SAIL TO GET ITS FIRST TEST, by Rachel Courtland
  • POSSIBILITIES OPENED BY ELECTRIC SOLAR WIND SAIL TECHNOLOGY  by Pekka Janhunen et al. – Finnish Meteorological Institute, Helsinki
  •  Centauri Dreams, ENTER THE ELECTRIC SAIL, by Paul Gilster on May 8, 2013
  •  Centauri Dreams, TO RIDE THE SOLAR WIND, by Paul Gilster on May 9, 2013

 Credits: Alexandre Szames, IAF/IAC, Finnish Meteorological Institute, Pekka Janhunen

 

27 maggio 2013 Posted by | Astrofisica, Astronautica, News, Scienze dello Spazio, Volo Interstellare | , , , , , , , , , , , , | 2 commenti

%d blogger hanno fatto clic su Mi Piace per questo: