Il Tredicesimo Cavaliere

Scienze dello Spazio e altre storie

Il gigante gassoso e la sua corte

gioveLa congiuntura economica sfavorevole sembra essere alle nostre spalle, e negli Stati Uniti le spese per le Scienze dello Spazio tendono ad aumentare, specialmente quelle relative all’esplorazione del Sistema Solare. C’è nell’opinione pubblica, ed ancor più nel Congresso, una forte curiosità per Europa, la luna di Giove, suscitata dalla presenza (assai probabile) di un grande oceano d’acqua all’interno di essa, che potrebbe ospitare un’intera biosfera e forme di vita complesse. Il bilancio preventivo per il 2016 della NASA, infatti, è aumentato di oltre mezzo miliardo di dollari rispetto a quello corrente, e si prevede che la tendenza continui almeno fino al 2019. Tra i più attenti a cogliere il momento positivo e ad interpretare glli umori dell’opinione pubblica, è stato il gruppo di esperti lobbisti della Planetary Society, che si sono battuti fieramente a favore dell’aumento dei fondi destinati alla NASA, risultando determinanti in svariate occasioni. E devono veramente aver fatto breccia nel cuore della gente se hanno incassato proprio in questi giorni, loro che lavorano esclusivamente grazie a contributi volontari e all’autofinanziamento, il più cospicuo regalo della loro storia offerto da una singola persona, pari a 4,2 milioni di dollari!

juno+Ah, l’America …. I nostri paperoni, che pure ci sarebbero, non vanno oltre le Cayman.

Ecco dunque spiegato il frenetico attivismo in cui la Planetary Society si è lanciata nelle ultime settimane, con parecchie nuove assunzioni nel Quartier Generale di Pasadena, e il tentativo di costruire una vera rete di sostenitori in tutto il mondo. Da parte sua, il Tredicesimo Cavaliere non ha tardato a farsi sentire, mettendo a disposizione della Society tutta la potenza delle sue bocche da fuoco. La sua Santa Barbara, secondo il più recente inventario, risulta costituita da una scatola di fiammiferi controvento e quattro petardi natalizi. La Society ha immediatamente risposto offrendo il posto di correttori di bozze per i sottotitoli italiani del loro materiale audiovisivo, posizione che l’equipaggio degli astrononni (nessuno ha meno di 50 anni, salvo “il pivello”) ha entusiasticamente accettato. Per aspera ad astra, incrementis.

 La NASA suddivide le sue missioni in tre categorie, definite in base al limite di spesa:

Discovery (limite di spesa 450 milioni di dollari) molto popolari tra gli ingegneri e gli scienziati dell’Agenzia per la velocità con cui possono essere ideate, assemblate e lanciate anche se a scapito della completezza dei dati scientifici ottenuti. Le missioni Discovery sono di esclusiva competenza della NASA, dalla individuazione dell’obbiettivo fino al termine del ciclo operativo. Questo profilo è stato definito e ufficializzato nel 1992, ed è stato utilizzato in 28 missioni, di cui 7 dirette verso Venere, 9 verso asteroidi o comete, e le altre da dividersi tra Luna e Marte. Il limite di spesa imposto a questa classe di missioni ne ha limitato fino ad oggi il raggio d’azione al Sistema Solare interno. Ma la comunità scientifica è preoccupata per la mancanza quasi totale di missioni attive nel Sistema Solare esterno che si verificherà nel prossimo decennio a causa dei tagli del bilancio NASA effettuati negli anni scorsi. Il metodo migliore per mitigare il danno sembra essere quello di favorire al massimo l’accesso al Sistema Solare esterno delle missioni di classe Discovery. La NASA ha compiuto un gesto concreto decretando che, da subito, nel bilancio di missione tutte le spese che cadono sotto la voce “operazioni”, vengano conteggiate a parte, e senza concorrere più, come già quelle relative al lancio e alla messa in orbita, al raggiungimento del tetto di spesa prefissato. Gli scienziati hanno risposto presentando dei progetti di classe Discovery di concezione radicalmente nuova: IVO, ELF, Kuiper e LIFE. In questo articolo parleremo di IVO, lasciando gli altri a una prossima occasione.

ganymedeNew Frontiers, (limite di spesa 1000 milioni di dollari). Le missioni vengono scelte e finanziate con un curioso meccanismo di divisione delle responsabilità tra Governo, Congresso e NASA, ma pagate con fondi provenienti dal bilancio di quest’ultima. Questo programma ha avuto inizio nel 2006 e ha dato vita fino a oggi a tre missioni: New Horizons, ormai in vista del suo principale obiettivo, Plutone; JUNO, che orbiterà intorno a Giove a partire dal 2016 per studiarne la magnetosfera; OSIRIS-REX, data di lancio prevista 2016, che studierà in maniera intensiva e riporterà a Terra dei campioni prelevati da alcuni asteroidi ricchi di materiale organico. La NASA sembra decisa ad emettere un nuovo bando nel 2016, che consentirebbe di avere le sonde pronte al lancio nel 2023.

Flagship, nessun limite di spesa. Si tratta di sofisticate missioni dotate di numerose, grandi e complesse apparecchiature atte a compiere ricerche ed esperimenti estesi e approfonditi. Hanno tempi di realizzazione lunghi, che possono risentire dei sentimenti dell’opinione pubblica e di tendenze macroeconomiche. Se ne può realizzare una ogni dieci anni, se va bene. Gli obiettivi che si pongono sono di livello strategico, e vengono decisi su delega presidenziale da un gruppo di super-esperti chiamato Planetary Science Decadal Survey. Il finanziamento grava interamente sul bilancio federale, sotto il controllo del Presidente. Gli esempi più recenti e indimenticabili di questa classe sono state le missioni Galileo e Cassini.

fiondamejoConsegnata la palma di missione Flagship (in pectore) a Europa Clipper per ovazione popolare, e riconosciuti i limiti della classe Discovery , appare chiaro che saranno le missioni classe New Frontiers quelle a cui saranno assegnati i compiti più importanti nei prossimi dieci o vent’anni. Il luogo più affollato negli anni ’30 sarà senza dubbio il Sistema Gioviano. Al centro del sistema c’è naturalmente il gigante gassoso, che emette più energia di quanta ne riceva dal Sole, con grave pericolo per la strumentazione che deve essere adeguatamente schermata, e il suo poderoso campo di gravità che rende possibile un energico giro di fionda gravitazionale alle astronavi in transito nel caso volessero cambiare rotta e/o aumentare velocità. Intorno al gigante ruotano la bellezza di 67 satelliti naturali, e lungo la sua orbita, nei punti di librazione L4 e L5 del sistema Sole-Giove, sono ospitati oltre 6000 asteroidi cosidetti Troiani. I quattro satelliti maggiori, ovvero Io, Europa, Callisto e Ganimede, completano il quadro offerto ai ricercatori.

europaIl primo robot terrestre in arrivo, come sappiamo, sarà JUNO nel 2016, il secondo veicolo della classe New Frontiers. Tra il 2028 e il 2032 circa, sarà la volta dell’europeo JUICE, che indagherà su Europa, Callisto e sopratutto Ganimede, il più grande dei satelliti di Giove e di tutto il Sistema Solare, sospettato di contenere anch’esso un oceano d’ acqua, proprio come Europa. Si tratta di un veicolo di classe L (large – limite di spesa 900 milioni di euro) che dimostra quanto l’Europa sia interessata a giocare le sue carte in questa assemblea scientifico-tecnologica.

Un’altra missione classe New Frontiers, chiamata Trojan Tour & Rendezvous, è attesa nelle zone degli asteroidi Troiani, che percorrono la stessa orbita di Giove. La composizione chimica e geologica di questi piccoli corpi celesti costituisce un caso scientifico ancora irrisolto: potrebbero essere composti di metallo e roccia e quindi essere simili a Ceres e agli altri asteroidi della Cintura Principale, che sono stati validamente sottoposti a indagine dalla sonda Dawn in questi ultimi mesi. Oppure potrebbero essere composti di rocce porose, gas volatili e acqua, come le comete. Conoscere la risposta sarebbere di grande aiuto per i ricercatori che cercano di scrivere la storia del Sistema Solare. I Troiani sono così ambiti come oggetti di ricerca, che nella zona dovrebbe presentarsi anche un’ospite illustre da tempo annunciato: la sonda giapponese erede di Ikaros, per l’occasione equipaggiata da una vela solare più grande e da un motore a ioni.

Ci sarà infine una missione dedicata all’osservazione di Io, e qui le cose si complicano. Di sicuro quel corpo celeste merita parecchia attenzione: appena più grande della nostra Luna, è in rapporto di risonanza orbitale 4:2:1 con Ganimede ed Europa, e il suo nucleo ferroso interagisce fortemente con la potente magnetosfera del gigante. Ma è l’attrazione gravitazionale integrata di questi tre attori che provoca i maggiori sconvolgimenti sulla piccola luna, che, sottoposta a contiui stress, dà origine a sempre nuove bocche vulcaniche e colate laviche sulla superficie, per la necessità di dar sfogo alle enormi pressioni e temperature createsi all’interno, scaricando in tutto il Sistema Giovano tonnellate e tonnellate dei materiali più diversi. Ebbene, se osserviamo i programmi delle classi New Frontiers e Discovery scopriamo che ambedue propongono missioni dedicate all’osservazione di Io. Nel primo caso si parla di un veicolo denominato Io Observer, che risiederà in un’orbita larga intorno al gigante svolgendo la maggior pare delle indagini in una situazione di relativa sicurezza rispetto all’intensa emissione di radiazioni provenienti da Giove. Periodicamente la sonda si lancerà in profondi quanto veloci flyby di Io per integrare le osservazioni effettuate dall’orbita.

ioMa dicevamo che è stato presentato anche un progetto per una missione di classe Discovery, sempre dedicata a Io. La missione Io Volcano Observer (IVO) dovrebbe operare da un’orbita polare gioviana, effettuando anch’essa periodici flyby di Io. La sonda conterrà non più di cinque apparecchi: due telecamere, una camera termografica all’infrarosso, un magnetometro e uno spettrometro di massa. L’apparato radio in dotazione controllerà anche la velocità del veicolo, e a bordo verrà installato un sistema ottico di trasmissione dati di nuova concezione. L’attenzione dei ricercatori sarà concentrata sulle sorgenti e l’estensione dell’attività vulcanica di Io e gli effetti della dispersione nell’ambiente gioviano del materiale proveniente dall’interno della luna. La durata della missione è fissata in 22 mesi, ma potrebbe essere prolungata fino 6 anni, in caso di necessità.

Tra il 2027 e il 2032, probabilmente, farà il suo ingresso nello spazio gioviano l’ammiraglia di questa flotta di esploratori, Europa Clipper, a cui oggi sono demandate le maggiori speranze di trovare finalmente la vita nel Sistema Solare.

A meno che JUICE….

ROBERTO FLAIBANI

FONTI

Annunci

31 marzo 2015 Posted by | Astrofisica, Astronautica, News, Planetologia, Scienze dello Spazio | , , , , | Lascia un commento

Acqua, acqua, ovunque

La nostra visione del Sistema Solare è completamente cambiata negli ultimi cinquant’anni. Ditelo a una festa, e chi vi ascolta darà per scontato che vi stiate riferendo a Plutone, il cui declassamento ha provocato più reazioni di qualsiasi altra recente notizia sui pianeti.Ma in aggiunta a tutto quello che abbiamo appreso dalle sonde, la nostra visione del Sistema Solare composto da un piccolo numero di pianeti, ora comprende un enorme numero di oggetti a immense distanze. Cinquant’anni fa , una Cintura di Kuiper di gran lunga più popolata della fascia principale degli asteroidi era solo teoria. E i primi modelli dl Sistema Solare con i quali sono cresciuto non includevano mai nessuna rappresentazione di una immensa nuvola di comete (ndt: la Nube di Oort), che si estendeva fino a cinquantamila Unità Astronomiche di distanza.

Abbiamo anche cominciato a capire che l’acqua allo stato liquido, una volta considerata esclusiva della Terra, potrebbe abbondare in tutto il Sistema. Caleb Scharf si occupa dell’argomento in un recente articolo apparso su Life Unbounded, prendendo nota di cosa i nostri modelli teorici ci dicono sulla presenza di oceani interni in svariati oggetti celesti.

Si può fare molto con modelli puramente teorici che cercano di determinare il giusto equilibrio idrostatico tra il peso di un corpo celeste e le sue forze di pressione interne, sia che siano esercitate in stato gassoso, solido o liquido: energia termica proveniente dalla formazione dei corpi stessi, calore generato dal decadimento radoattivo di isotopi d’origine naturale, tutto gioca un ruolo. Basta inserire qualche dato reale, per esempio misurazioni inerenti a luoghi come Europa o Titano, perché i nostri modelli diventino molto meglio calibrati. L’aspetto intrigante è che si può giocare variando la composizione e la stratificazione interna del materiale di un corpo planetario per trovare la combinazione che funziona meglio. Di conseguenza si può fare una stima della natura e dell’estensione di qualsiasi zona di acqua allo stato liquido situata sotto la superfice.

Scoprire oceani interni

I dati diventano impressionanti, come dimostrano Hauke Hussmann e colleghi in un testo del 2006 apparso sulla rivista Icarus. Si inizia con Galileo, la missione verso Giove che ha riportato dati sufficienti per cambiare la nostra visione delle lune del pianeta gigante. Galileo ha scoperto campi magnetici secondari indotti nelle vicinanze di Europa, Callisto e Ganimede, fornendo consistenti prove sperimentali a sostegno dell’ipotesi che esistano oceani sotto le loro superfici. Si pensa che tali campi siano generati da ioni contenuti in uno strato d’acqua allo stato liquido presente sotto la crosta ghiacciata esterna. Indubbiamente Europa è diventata un obiettivo primario per una futura ricerca di astrobiologia, grazie alla prospettiva di trovare, oltre all’acqua, anche una crosta di ghiaccio sottile.

L’articolo di Hussmann prosegue calcolando i modelli di strutture interne per corpi celesti ghiacciati di medie dimensioni nel Sistema Solare esterno, supponendo come acquisito l’equilibrio termico tra calore di origine radioattiva prodotto dal nucleo e la perdita di calore attraverso la crosta di ghiaccio. Ora possiamo davvero cominciare a espandere il quadro. Il testo dimostra che l’esistenza di oceani sotto la superficie è plausibile non solo nel caso, ora ovvio, di Europa, ma anche di Rhea, Titania, Oberon, Tritone e Plutone. Un esempio può essere costituito anche dagli oggetti trans-nettuniani (TNO) 2003-UB313, Sedna e 2004-DW. Hussmann dice:

Nei corpi celesti qui in discussione, gli strati liquidi sono in diretto contatto con i nuclei rocciosi. Ciò contrasta con gli oceani interni nei grandi satelliti ghiacciati come Ganimede, Callisto o Titano, dove essi sono racchiusi tra una crosta di ghiaccio comune sopra e da strati di ghiaccio supercompressi sotto. Il contatto tra l’acqua e i silicati permetterebbe uno scambio molto efficace di minerali e sali tra le rocce e l’oceano nelle zone interne di questi satellti di medie dimensioni.

E’ interessante notare che Encelado, come risulta dai continui esami a cui è sottoposto dalla sonda Cassini, non si accorda col modello Hussmann. Nel documento si segnala infatti che sorgenti di calore diverse da quella originata dal decadimento radioattivo servirebbero per sostenere un tale oceano, con l’ovvia opzione rappresentata dal calore sviluppato dalle maree. Abbiamo molto da imparare su Encelado: il testo affronta argomenti come la storia della sua orbita, e fa paragoni con Mimas, dove la forza della marea è molto più intensa. Ma le conclusioni sono chiare: abbiamo necessità di una maggior mole di osservazioni per chiarire se gli oceani interni sono o meno un fenomeno comune nel Sistema, tra le lune e i corpi celesti ghiacciati come gli oggetti trans-nettuniani.

Oceani oscuri e lontani

Hussmann e colleghi partono dall’assunto che i bacini sotterranei in questi mondi esterni si trovino sotto una crosta di ghiaccio spessa oltre 100 chilometri, abbastanza perchè ci sia poco collegamento tra tali bacini e le caratteristiche di superficie. Ma lo studio dell’interazione tra questi oceani e i campi magnetici e le particelle cariche che li circondano, e le reazioni dei corpi celesti alle maree esercitate dal corpo primario (ndt: uno dei pianeti esterni, nel nostro caso), possono aiutarci a confermare o smentire l’esistenza degli oceani stessi. Qui c’è lavoro per generazioni di sonde spaziali, ma se azzecchiamo il modello giusto fin dall’inizio, allora potremo fare ragionevoli estrapolazioni a proposito dell’onnipresenza dell’acqua.

Il modello proposto nel documento, dicono gli autori, non è applicabile a Ganimede, Callisto e Titano, ma vedo che nel suo articolo Scharf afferma che Titano potrebbe avere un volume di acque dieci volte superiore a quello degli oceani terrestri. Questi sono i dati che contano. Come dice Scharf:…”questi corpi celesti da soli potrebbero fornire una quantità d’acqua allo stato liquido da dieci a sedici volte maggiore di quella presente sulla Terra.” Mettiamo nel conto anche gli oggetti trans – nettuniani, aggiungiamo la possibilità di un eventuale riscaldamento d’origine radioattiva, e otterremo quanto meno l’eventualità che i TNO siano la più estesa sorgente di acqua allo stato liquido dell’intero Sistema Solare.

Non avevamo forse detto che la nostra visione del Sistema era cambiata? Questa rivoluzione continua non appena ci addentriamo nella Cintura di Kuiper. Speriamo che la sonda New Horizons scopra un piccolo TNO da studiare, nel corso del suo viaggio oltre Plutone e Caronte, ma forse potremmo sperare nel lancio di sonde destinate a orbitare intorno ai satelliti dei pianeti esterni o ad altri oggetti, aiutandoci a comprenderne la composizione interna. Se si avvalora la prospettiva che esistano bacini d’acqua interni nelle proporzioni indicate precedentemente, allora tutta la Cintura di Kuiper avrebbe un seppur minimo potenziale astrobiologico.

Titolo originale:“Water, Water, Everywhere” scritto da Paul Gilster e pubblicato in Centauri Dreams il 18 febbraio 2011. Traduzione italiana di Roberto Flaibani, editing di Beatrice Parisi. Le illustrazioni riproducono alcune opere del pittore Giulio Corcos, che ringraziamo con simpatia. Questo articolo segna la nostra partecipazione al Carnevale della Chimica, terza edizione, e inaugura una fase di collaborazione con Centauri Dreams, che ci auguriamo lunga e fruttuosa.

Fonte: Hussmann et al., “Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects,” Icarus Vol. 185, Issue 1 (2006), p. 258-273.

21 marzo 2011 Posted by | Carnevale della Chimica, Planetologia, Scienze dello Spazio | , , , , , , , , | 2 commenti

   

%d blogger hanno fatto clic su Mi Piace per questo: