Il Tredicesimo Cavaliere

Scienze dello Spazio e altre storie

Ci siamo quasi…

locandina tredicesimo cavaliere blog facebookpage web2.0

 

A breve sarà on-line il nuovo blog: “IL TREDICESIMO CAVALIERE 2.0“, che si propone di stupire i fedelissimi e di coinvolgere sempre più appassionati ed esperti di scienze delle spazio e fantascienza.    

Il Team di autori e  in particolar modo il responsabile supremo, sua eccellenza Roberto Flaibani, stanno lavorando a ritmi serratissimi  con l’intento di creare un ambiente accogliente, che riesca a coinvolgere e a nutrire la sete di conoscenza verso ciò che ci circonda. 

Completamente rinnovato in grafica e funzionalità, ma sulla consolidata  linea guida del suo predecessore, Il Tredicesimo Cavaliere 2.0 vi invita a lasciare commenti, idee e suggerimenti al fine di prepararsi al meglio al suo lancio.

 

31 maggio 2016 Posted by | 4th Symposium IAA - SETI, Astrofisica, Astronautica, by G. de Turris, Carnevale della Chimica, Carnevale della Fisica, Carnevale della Matematica, Ciberspazio, Cinema e TV, Difesa Planetaria, Epistemologia, Fantascienza, Giochi, Letteratura e Fumetti, missione FOCAL, News, NON Carnevale della Fisica, Planetologia, Radioastronomia, Referendum Prima Direttiva, Scienze dello Spazio, Senza categoria, SETI, Volo Interstellare | Lascia un commento

Lenti gravitazionali nel Sistema Solare

GL Pianeti

Immagine: la fascia completa delle sfere focali comprese fra 550 e 17.000 UA dal Sole, creata dall’effetto di lente gravitazionale del Sole e di ciascun  pianeta, mostrata in scala. La scoperta di questa fascia di sfere focali è il principale risultato esposto in questo lavoro, insieme al calcolo dei relativi guadagni di antenna. Fonte: C. Maccone.

La prima dimostrazione sperimentale della Teoria della Relatività Generale fu eseguita da Arthur Eddington nel 1919, quando riuscì a misurare gli effetti del campo o meglio del pozzo gravitazionale del Sole sulla luce delle stelle ad esso vicine. La massa del Sole, infatti, genera una distorsione del tessuto dello spaziotempo in grado di deflettere le onde elettromagnetiche provenienti da una “sorgente”astronomica di qualsiasi tipo (pianeti extra-solari, stelle, galassie, o altro), e farle convergere in un punto detto “fuoco”, dove l’informazione da esse veicolata risulta intensificata, amplificata, ingrandita. Per le evidenti analogie con le lenti ottiche, questo fenomeno è stato chiamato “lente gravitazionale”. Il fuoco del “sole nudo”, così chiamato perché la sua posizione è stata calcolata senza tener conto di nessun effetto di distorsione o attenuazione del segnale sorgente, si trova ben addentro alla Nube di Oort alla bella distanza di 550 <UA>.

Dato che abbiamo parlato del fuoco gravitazionale del Sole, è interessante riflettere sulla storia di questo studio. Il pensiero di Albert Einstein sulle lenti gravitazionali in astronomia fu affrontato esplicitamente in un documento del 1936, ma per le formule matematiche alla base del fenomeno su vasta scala si dovette aspettare fino al 1964, quando Sydney Liebes dell’Università di Stanford lavorò con la lente prodotta da una galassia interposta fra la Terra e una quasar lontana. In questo modo nel 1978 l’astronomo britannico Dennis Walsh ottenne la prima “immagine” di una quasar, seguita l’anno successivo dallo studio di Von Eshleman sulla lente del Sole, comprendente l’idea di inviare un telescopio al fuoco del Sole nudo.

Riflettendo su come utilizzare la lunghezza d’onda di 21 cm Eshleman pensò al SETI, il cui concetto fu poi esposto da Frank Drake nel 1987. Se si ha a portata di mano una buona biblioteca accademica, la sua raccolta del Journal of the British Interplanetary Society del 1994 dovrebbe includere i risultati della Conferenza su Missioni Spaziali e Astrodinamica che Claudio Maccone organizzò due anni dopo. Si pensò quindi al telescopio spaziale FOCAL nell’ambito della missione SETISAIL, anche se il SETI sarebbe stato solo uno dei tanti aspetti delle sue indagini scientifiche.(n.d.e.)

FOCAL oltre le stelle

Per cercare un modo di sfruttare la lente gravitazionale del Sole dobbiamo tenere conto della corona solare, un problema che venne presto affrontato sia da Eshleman (Stanford) sia da Slava Turyshev (JPL). Per evitare le distorsioni della corona bisognerebbe inviare un telescopio non a 550 UA di distanza ma ben più lontano, approfittando del fatto che non abbiamo a che fare con un punto focale ma con una linea focale. A tale proposito riportiamo il pensiero di Claudio Maccone:

“una conseguenza semplice ma molto importante della discussione di cui sopra è che anche tutti i punti su una retta oltre questa distanza focale minima sono dei fuochi, perché i raggi luminosi passanti accanto al Sole a una distanza superiore a quella minima hanno un angolo di deflessione più piccolo e pertanto si uniscono a una distanza ancora maggiore dal Sole.”

Abbiamo quindi la possibilità di spostarci oltre le 550 UA, anzi non abbiamo scelta. La corona solare crea quello che Maccone definisce un “effetto di lente divergente”, che si oppone all’effetto convergente associato a una lente gravitazionale. Parafrasando il documento si può dire che la distanza minima che la sonda FOCAL deve raggiungere è maggiore per le frequenze più basse (delle onde elettromagnetiche che attraversano la corona) e minore per le frequenze più alte. Quindi, a 500 GHz il fuoco si trova a circa 650 UA. A 160 GHz, si trova a 763 UA.

Ma nel caso volessimo realizzare ponti radio interstellari, dovremmo forse limitarci all’utilizzo della lente gravitazionale del Sole e di quelle delle stelle vicine, in realtà anche i pianeti possono essere usati a questo scopo. Nel suo studio del 2011 riguardante quest’idea, pubblicato su Acta Astronautica, Maccone produce le equazioni necessarie, notando che il rapporto fra il quadrato del raggio di un pianeta e la sua massa ci permette di calcolare la distanza che una sonda deve raggiungere per poter sfruttare la lente del pianeta stesso. Di conseguenza abbiamo definito il concetto di “sfera focale” di un pianeta.

La lente si sposta nella Nube di Oort .

L’illustrazione a inizio articolo contiene delle sorprese. Ci aspetteremmo Giove in cima all’elenco di lenti planetarie e, in effetti, la sua sfera focale è la prima fuori dal Sole a 6100 UA. È un numero utile da ricordare, perché potremmo scoprire che gli effetti della corona solare sono insormontabili per la produzione delle immagini necessarie. In tal caso, dovremmo usare una posizione a metà strada verso la Nube di Oort interna.

Dato che ha un rapporto elevato fra quadrato del raggio e massa, dopo Giove troviamo Nettuno a 13.525 UA. La sfera focale di Saturno si trova a 14.425 UA, dopodiché troviamo quella della Terra a 15.375 UA. Il nostro pianeta è un miglior candidato di Urano come lente perché è il corpo con la maggiore densità (rapporto fra massa e volume) nel Sistema Solare. Maccone lo sottolinea particolarmente perché conosciamo la superficie e l’atmosfera della Terra meglio di quelle di qualsiasi altro pianeta. Una missione FOCAL utilizzante la Terra come lente partirebbe in netto vantaggio per aggiustare l’immagine distorta di un oggetto distante.

Come potremmo sfruttare queste sfere focali planetarie, che nel caso di Venere si estendono fino a 17.000 UA? Partendo dal Sistema Solare una sonda veloce potrebbe esaminarle una per una, iniziando le osservazioni al calare degli effetti della corona solare. Sottolineando che una sonda diretta ad Alpha Centauri attraverserebbe tutte queste sfere focali, Maccone riflette sugli eventuali risultati:

“Innanzitutto, anche se il Sole è immobile nel quadro di riferimento eliocentrico del Sistema Solare, i pianeti invece si muovono. Ciò significa che attraversano una certa area del cielo visto dalla sonda, la quale potrebbe trarre vantaggio da questa specie di lente di ingrandimento semovente. Quanti sono i pianeti extrasolari che ricadrebbero all’interno di questa lente? Ovviamente al momento non lo sappiamo, ma gli oltre 400 esopianeti scoperti finora [il documento risale al 2011] promettono bene per il rilevamento di molti altri esopianeti da parte di una sonda adeguatamente equipaggiata, che percorra la distanza compresa fra 550 e 17.000 UA e che usi le lenti gravitazionali dei pianeti.”

Tali scoperte sarebbero del tutto serendipiche, a dir poco, dato che la nostra missione per Alpha Centauri in uscita dal Sistema Solare vedrebbe solo ciò che si troverebbe in linea con il pianeta studiato. Il fatto di avere Giove a 6.100 UA e la Terra a 15.375 AU ci offre dei bersagli utili per sperimentare le tecnologie che ci serviranno per ricavare delle immagini dall’incontro con una sfera focale. Uno dei grossi punti interrogativi della missione Breakthrough Starshot è la costruzione e l’utilizzo dei laser in fase. Ma se verranno realizzati e potremo raggiungere velocità pari a una significativa frazione della velocità della luce, missioni dedicate all’esplorazione delle lenti planetarie sarebbero fattibili.

Chiaramente è il Sole la nostra prima opzione come lente gravitazionale, non solo per la relativa prossimità del suo punto focale minimo (550 UA), ma perché il guadagno effettivo della sua lente è più alto di quello della lente di Giove e molto più elevato di quello della lente della Terra. Maccone calcola i valori numerici del guadagno dalla riga dell’idrogeno fino al picco CMB a 160 GHz, valutando ognuno di essi per la lente gravitazionale del Sole oltre che per le sfere focali dei vari pianeti. Se vogliamo lavorare con il potenziale delle lenti planetarie, abbiamo bisogno di notevoli progressi nelle tecnologie delle antenne e dell’imaging, al fine di leggere le deboli firme inviate dai pianeti.

Il documento è: Maccone,  New Belt Beyond Kuiper’s: A Belt of Focal Spheres Between 550 and 17,000 AU for SETI and Science, Acta Astronautica Vol. 69, Nn. 11-12 (Dicembre 2011), pp. 939-948 (estratto).

traduzione di FAUSTO MESCOLINI

editing ROBERTO FLAIBANI

23 maggio 2016 Posted by | Astrofisica, Astronautica, News, Planetologia, Radioastronomia, Scienze dello Spazio, Senza categoria, SETI | , | Lascia un commento

Batimetria su Titano

Titano metano etano

Il mare Ligeia, mostrato qui in un’immagine in falsi colori ripresa dalla missione internazionale Cassini, è il secondo bacino  liquido più grande conosciuto su Titano, la luna di Saturno. Esso misura circa 420 km x 350 km e le sue coste si estendono per oltre 3.000 chilometri. È costituito da metano liquido. Il mosaico mostrato qui è il risultato di una sintesi di immagini radar ottenute dai flyby tra il febbraio 2006 e l’aprile 2007. Credit: NASA / JPL-Caltech / ASI / Cornell.

 

Ai tempi in cui la sonda Cassini si stava avvicinando a Saturno e tutti aspettavamo l’arrivo del lander Huygens sulla superficie della luna Titano, prendeva sempre più corpo l’ipotesi che Huygens, invce di trovare una superficie solida, si sarebbe “tuffato” in un mare di idrocarburi. Mi ricordo i bozzetti artistici ispirati a questi avvenimenti apparsi su molti siti Internet del tempo. Alla fine l’atterraggio avvenne su terreno solido, ma da allora i rilevamenti prolungati di Cassini hanno dimostrato che su Titano esistono mari e laghi per oltre 1,6 milioni di chilometri quadrati (circa il 2 % della superficie).

Il liquido che riempie questi bacini ovviamente non è acqua, ma una miscela di metano ed etano, presenti in un’atmosfera che è quasi per il 95 % composta da azoto, con metano, piccole quantità di idrogeno ed etano che costituiscono il resto. Cassini ci ha mostrato tre grandi mari vicino al polo nord, che sono circondati da numerosi piccoli laghi; mentre nell’emisfero sud finora è stato trovato un unico bacino. Un nuovo lavoro, condotto con i dati elaborati dai flyby di Cassini tra il 2007 e il 2015, ora conferma che il mare Ligeia, uno dei più grandi mari di Titano, è costituito principalmente da metano liquido.

 

Titano metano etano

Un’immagine radar delle regioni nord polari di Titano (al centro), con numerosi laghi in primo piano (a sinistra) e un grande mare (a destra). Il mare Ligeia, con dimensioni di circa 420 km x 350 km, è il secondo deposito di idrocarburi liquidi per grandezza conosciuto su Titano. Le sue coste si estendono per circa 2000 chilometri e si possono vedere molti fiumi che vi sfociano. Al contrario, i numerosi laghi sono ampi prevalentemente meno di 100 km e hanno forme più arrotondate con rive scoscese. Credit: NASA / JPL-Caltech / ASI / USGS; a destra e a sinistra: NASA / ESA. Riconoscimento: T. Cornet, ESA.

 

La scoperta è stata un po’ inaspettata, dato che l’etano viene prodotto quando la luce del sole fa a pezzi le molecole di metano. Perciò le attese per il mare Ligeia riguardavano principalmente l’etano. Alice Le Gall (Laboratoire Atmosphères, Milieux, Observations Spatiales and Université Versailles Saint-Quentin, France), che ha condotto questo nuovo studio, commenta così la scoperta:

 

 

“O il mare Ligeia è alimentato da recenti piogge di metano o qualcosa sta rimuovendo l’etano da esso. È possibile che l’etano finisca nella crosta sottomarina o che scorra in qualche modo nell’adiacente mare Kraken, ma dimostrare questo richiederà ulteriori indagini “.

 

Mentre questo lavoro procedeva, Le Gall e la squadra si appoggiarono ad un esperimento eseguito con radio scandaglio nel 2013, descritto in questo comunicato stampa dell’ESA. Il radio scandaglio, condotto da Marco Mastrogiuseppe, rilevò echi del fondo marino e fu in grado di calcolare la profondità del mare Ligeia durante il percorso della Cassini, prima rilevazione in assoluto di un fondale al di fuori dalla Terra. La maggiore profondità registrata è stata di 160 metri. La Le Gall nel suo lavoro ha messo in parallelo i dati raccolti dello scandaglio con le osservazioni delle emissioni termali di Ligeia alla lunghezza d’onda delle microonde. Il risultato: il nuovo articolo riporta che i ricercatori sono stati in grado di separare le emissioni termali provenienti dal fondo del mare da quelle originate dalla massa liquida. Il fondale è risultato essere coperto da ciò che la Le Gall definisce “uno strato di fanghi ricchi di composti organici.”

 

 

Titano metano etano

Modalità con cui i diversi composti organici si riversano nei mari e laghi di Titano, la più grande luna di Saturno. Un recente studio ha rivelato che il mare Ligeia, uno dei tre mari di Titano, si compone di metano puro e ha un fondale ricoperto da fanghi ricchi di materiale organico. Credit: ESA.

 

È possibile vedere come si sviluppa il processo nell’immagine sopra. L’azoto e il metano nell’atmosfera di Titano producono molecole organiche, le più pesanti delle quali cadono sulla superficie. Nel raggiungere il mare attraverso la pioggia o uno dei fiumi di Titano, alcuni vengono disciolti, mentre altri si depositano sul fondo dell’oceano. Troviamo anche che la superficie circostante i laghi e i mari è probabilmente inondata da idrocarburi liquidi, a causa della mancanza di variazione di temperatura tra mare e riva.

L’articolo è di Le Gall e altri, Composizione, cambiamento stagionale e batimetria del Mare Ligeia, Titano, ricavati dalle sue emissioni termali al microonde, su “Rivista di Ricerca Geofisica: i Pianeti”, pubblicato online il 25 Febbraio 2016 (abstract). Il lavoro di Marco Mastrogiuseppe sulla batimetria del Mare Ligeia è descritto in La batimetria di un mare di Titano, su “Geophysical Research Letters”, pubblicato online il 4 marzo 2014 (abstract).

Titolo originale Beneath a Methane Sea di Paul Gilster , pubblicato su Centauri Dreams il 27 aprile 2016

Traduzione di SIMONETTA ERCOLI

17 maggio 2016 Posted by | Astrofisica, Planetologia, Scienze dello Spazio | , , | 1 commento

eso13 – Arrivano i giganti…

 La ricerca di una traccia biologica nell’atmosfera di un esopianeta è un obiettivo importante e, come spiega Ignas Snellen, le missioni spaziali non sono l’unico modo di procedere. Professore di astronomia all’Università di Leiden nei Paesi Bassi, il Dott.  Ignas  Snellen è convinto che le tecnologie come la spettroscopia ad alta dispersione e l’imaging a contrasto elevato siano più efficaci quando utilizzate in grandi osservatorii a terra. Un gruppo di astronomi da lui guidati ha già usato queste tecniche per determinare la velocità di rotazione di Beta Pictoris b, pari a otto ore. Per studiare quelle regioni dello spettro che sono inaccessibili da terra, avremo bisogno di telescopi spaziali attentamente studiati e in sinergia con la nuova generazione di telescopi terrestri giganti, che si prevede entreranno in funzione negli anni ‘20 del 2000. (Paul Gilster) A seguire l’articolo del dott. Snellen.

coronogafo telescopio esopianeta pianeta extra-solare spettroscopia

E-ELT – Telescopio Europeo Estremamente Grande

Mentre ero profondamente impegnato nel progetto del mio dottorato di ricerca, studiando i centri attivi di galassie lontane, in un campo molto diverso dell’astronomia si stava compiendo una vera rivoluzione scientifica. A metà degli anni ‘90 si stavano infatti scoprendo i primi pianeti orbitanti intorno a stelle diverse dal nostro Sole. Per alcuni anni riuscii a ignorare queste scoperte. Favorito dalla mia ignoranza in materia, mi univo ai molti scettici che criticavano questi primi risultati. Risultati con i quali invece si dovette presto fare i conti. Quando venne trovato il primo pianeta in transito, seguito poco dopo dal rilevamento della sua atmosfera, cambiai radicalmente campo di ricerca e mi gettai, come molti altri, sugli esopianeti. Dopo oltre un decennio quella rivoluzione è ancora in corso.

DARWIN, TPF e SIM

Negli ultimi venticinque anni non tutte le imprese scientifiche hanno avuto successo. Subito dopo le prime scoperte degli esopianeti sono stati profusi enormi sforzi nella progettazione (e nella ricerca dell’appoggio politico) di una sonda che possa rilevare i potenziali gas marcatori biologici nelle atmosfere dei sistemi planetari vicini. Gli astronomi europei si stavano concentrando su DARWIN. L’idea base della missione prevedeva 4 o 5 sonde spaziali dotate di telescopi con tecnologia di imaging ad alta risoluzione utilizzante l’interferometria ad annullamento. La luce stellare raccolta sarebbe stata combinata in modo tale da annullare la luce in asse, ma lasciando intatta la potenziale luce del pianeta fuori asse. Dopo una serie di studi lunghi oltre un decennio, nel 2007 l’ESA interruppe lo sviluppo di DARWIN, per l’eccessiva difficoltà. Nello stesso periodo furono proposte alla NASA varie versioni del Terrestrial Planet Finder (TPF), compreso un interferometro ad annullamento e un coronografo. Quest’ultimo usa delle ottiche appositamente studiate per ridurre la luce stellare, lasciando passare quella eventuale dei pianeti. Anche questi progetti furono in seguito annullati. Indubbiamente una battuta d’arresto anche peggiore ha interessato la Space Interferometry Mission (SIM), che doveva cercare i pianeti di massa simile alla Terra nelle zone abitabili delle stelle vicine usando l’astrometria. Dopo essere stata rimandata più volte, la missione fu infine annullata nel 2010.

 

CORONOGRAFO TELESCOPIO ESOPIANETA PIANETA EXTRA-SOLARE SPETTROSCOPIA

E-ELT

Quanto dovremmo essere pessimisti?

Per questi progetti  sono state spese enormi quantità di tempo ed energia dei ricercatori, oltre a milioni di dollari e di euro. È un vero peccato, considerando tutti gli altri interessanti progetti alternativi che avrebbero potuto essere finanziati. Dovremmo porci degli obiettivi più realistici e imparare dalle missioni di successo, come Kepler della NASA, che fu concepita e sviluppata nello stesso periodo. Un aspetto fondamentale dell’adozione di Kepler da parte della NASA fu la dimostrazione, tramite gli esperimenti a terra (di Bill Borucki e colleghi), del fatto che la tecnologia era pronta. Una missione viene infatti approvata solo se si ritiene che ne sia garantito il successo. È questo aspetto che ha affossato DARWIN e il TPF ed è lo stesso che mi preoccupa quando penso ai nuovi concetti base di sonde molto intelligenti, come il grande occultatore esterno per la missione New Worlds. Forse non sono abbastanza sognatore. In ogni caso, come insegna Kepler, i tempi d’attesa  delle grandi missioni spaziali sono molto lunghi. Ne consegue che per i prossimi 25 anni sarà molto improbabile che venga lanciata una missione spaziale per cercare i gas marcatori biologici nelle atmosfere dei pianeti simili alla Terra. Se sono fortunato riuscirò a vederla prima di morire. Detto questo, la mia idea è: partiamo da terra!

 

CORONOGRAFO TELESCOPIO ESOPIANETA PIANETA EXTRA-SOLARE SPETTROSCOPIA

Thirty Meter Telescope

La sfida a terra

La prima prova di vita extraterrestre verrà dal rilevamento dei marcatori biologici: l’assorbimento derivante da quei gas che ci si aspetta di trovare nell’atmosfera di un esopianeta quando sono prodotti da processi biologici. Gli esempi migliori sono costituiti da ossigeno e ozono, come si vede nell’atmosfera terrestre. L’osservazione di questi gas nelle atmosfere degli esopianeti non sarà la prova definitiva della vita extraterrestre, ma di certo un primo passo. Tali osservazioni richiedono una spettrofotometria di alta precisione, molto difficile da eseguire da terra. Innanzitutto, la nostra atmosfera assorbe e disperde la luce. Si tratta di un problema soprattutto per le osservazioni dei pianeti simili alla Terra, perché i loro spettri mostreranno delle bande di assorbimento nelle stesse lunghezze d’onda dell’atmosfera terrestre. Da parte loro, le turbolenze atmosferiche distorcono la luce che raggiunge i telescopi a terra. La luce quindi non forma dei fronti d’onda perfetti, compromettendo le misurazioni di alta precisione. Inoltre, quando gli oggetti vengono osservati a lungo nel corso di una notte, il percorso della loro luce attraverso l’atmosfera cambia, come cambia la luce stellare che entra nello strumento, rendendo la stabilità un grosso problema. Queste sono le ragioni principali per cui molti appassionati degli esopianeti pensavano fosse impossibile sondarne le atmosfere da terra.

(AVVISO: per chi è interessato a un discorso approfondito sulla spettroscopia ad alta dispersione (HDS) e sulla imaging a contrasto elevato (HCI) abbiamo previsto un  percorso separato. Chi preferisce una lettura facilitata, può continuare senza tener conto di questo avviso).

 

CORONOGRAFO TELESCOPIO ESOPIANETA PIANETA EXTRA-SOLARE SPETTROSCOPIA

Giant Magellan Telescope

Per rilevare le caratteristiche di assorbimento delle atmosfere degli esopianeti è ideale la spettroscopia ad alta dispersione (high dispersion spectroscopy, HDS), vale a dire la separazione di un’onda in componenti dello spettro con diverse lunghezze d’onda. L’HDS raggiunge una precisione di un milionesimo della lunghezza d’onda però richiede telescopi di enormi dimensioni, non trasferibili nello spazio. I telescopi spaziali possono raggiungere solo la media dispersione, al massimo di un millesimo della lunghezza d’onda, comportando quindi tempi di osservazione di gran lunga maggiori. Un altro vantaggio dell’alta dispersione è che è sensibile all’effetto doppler dovuto al moto orbitale di un pianeta, il cui segnale può essere così distinto sia da quello della sua stella sia da quello dell’atmosfera terrestre. Due nuovi strumenti nel telescopio VLT permetteranno di estendere la ricerca anche ai pianeti più freddi e più piccoli.
Mentre con l’HDS si analizza la luce della stella filtrata dall’atmosfera dei pianeti più vicini, quelli più distanti possono essere osservati con l’imaging a contrasto elevato (HCI) (anche in combinazione con la coronografia), che riduce la luce della stella. I migliori risultati si ottengono con la combinazione delle due tecniche.

 

CORONOGRAFO TELESCOPIO ESOPIANETA PIANETA EXTRA-SOLARE SPETTROSCOPIA

James Webb Space Telescope

Arrivano i giganti

Sia gli Stati Uniti sia l’Europa stanno costruendo una nuova generazione di telescopi che possono essere a ragione chiamati giganti. Il Telescopio Gigante Magellano (Giant Magellan Telescope, GMT) consisterà di sei specchi da 8,4 m, equivalenti a un telescopio del diametro di 24,5 m. Il Telescopio da Trenta Metri (Thirty Meter Telescope, TMT) avrà proprio questa dimensione, mentre il Telescopio Europeo Estremamente Grande (European Extremely Large Telescope, E-ELT) sarà quello più ampio con un diametro effettivo di 39 m. Tutti e tre i progetti sono in competizione per essere pienamente operativi intorno al 2025.
In questa partita le dimensioni sono tutto, in particolare per le osservazioni HDS e HDS+HCI. L’HDS trae beneficio dal numero di protoni che si possono raccogliere, proporzionale al quadrato del diametro. Prendendo in considerazione anche altri effetti, l’E-ELT sarà cento volte più sensibile del VLT (in particolare grazie allo strumento della prima luce METIS e a HIRES). Il telescopio ci porterà vicino all’intervallo necessario per cercare l’ossigeno molecolare nelle atmosfere dei pianeti terrestri che transitano vicino alle nane rosse. Se questi sistemi vicini in transito esistono potremo dirci fortunati. Secondo le simulazioni, le stelle più piccole rendono il segnale trasmesso dall’ossigeno molecolare di un pianeta delle dimensioni della Terra simile a quelli del monossido di carbonio, già rilevati nelle atmosfere dei gioviani caldi. È solo che i sistemi saranno molto più tenui di Tau Bootis e pertanto richiederanno dei telescopi molto più grandi. La tecnologia esiste già, ma si tratta di raccogliere fotoni a sufficienza. Se persino i telescopi estremamente grandi dovessero rilevarsi insufficienti, il problema dovrà essere risolto in modo diverso. Le osservazioni HDS delle stelle luminose non richiedono degli specchi di forma precisa, pertanto potrebbero essere possibili disponendo delle serie di raccoglitori di luce a bassa precisione, ma si tratta di un’ipotesi lontana nel futuro.

Ancora più promettenti sono le capacità di imaging a elevato contrasto dei futuri ELT. I telescopi non solo raccolgono più fotoni, ma vedono anche in maniera più nitida. La loro capacità di vedere i pianeti più tenui nel bagliore delle stelle luminose aumenta fino alla quinta potenza all’aumentare delle dimensioni. Ciò rende l’E-ELT 1000 volte più sensibile del VLT. I pianeti rocciosi nelle zone abitabili delle stelle vicine saranno quindi a portata di mano. Anche in questo caso le simulazioni indicano la possibilità di rilevare emissioni termiche intorno alle stelle più vicine, mentre HDS+HCI nelle lunghezze d’onda ottiche può cercarne lo spettro di riflettanza, magari includendo le firme dell’ossigeno molecolare.

 

CORONOGRAFO TELESCOPIO ESOPIANETA PIANETA EXTRA-SOLARE SPETTROSCOPIA

JWST

Missioni spaziali realistiche

Qualsiasi cosa accada con la ricerca degli esopianeti dallo spazio, i telescopi a terra si faranno strada nella caratterizzazione dei pianeti simili al nostro. Ciò non toglie la necessità delle missioni spaziali. Innanzitutto non ho reso giustizia ai dati fantastici e rivoluzionari che ci fornirà il JWST. Poi, una serie di missioni dedicate ai transiti, la TESS della NASA (che verrà lanciata nel 2017) e le CHEOPS e PLATO dell’ESA (2018 e 2024), scopriranno tutti i sistemi planetari vicini in transito, un prerequisito fondamentale per gran parte di quanto fin qui abbiamo discusso.
Soprattutto, le misurazioni da terra non potranno darci un quadro completo delle atmosfere dei pianeti, semplicemente perché gran parte degli spettri non sono da qui accessibili. Pertanto la prova definitiva della vita extraterrestre verrà probabilmente da una missione spaziale del genere di DARWIN o TPF. Il rilevamento da terra dell’acqua nell’atmosfera di un pianeta terrestre aprirebbe delle porte presso i politici, ma della massima importanza sarà il giusto tempismo di tali missioni. Puntando troppo in alto e troppo presto si perderebbe molto tempo e denaro, a spese del progresso nella ricerca degli esopianeti. Sognare è bello, ma senza dimenticare di restare realistici.

CORONOGRAFO TELESCOPIO ESOPIANETA PIANETA EXTRA-SOLARE SPETTROSCOPIA

Dott. Ignas Snellen

Ulteriori letture

Snellen et al. (2013) Astrophysical Journal 764, 182: Finding Extraterrestrial Life Using Ground-based High-dispersion Spectroscopy

Snellen et al. (2014), Nature 509, 63: Fast spin of the young extrasolar planet beta Pictoris b 

Snellen et al. (2015), Astronomy & Astrophysics 576, 59: Combining high-dispersion spectroscopy with high contrast imaging: Probing rocky planets around our nearest neighbors .

Titolo originale:”Extraterrestrial Life, The Giants are coming” di Ignas Snellen, pubblicato su Centauri Dreams il 11 settembre 2015

 

Traduzione e adattamento di FAUSTO MESCOLINI

4 maggio 2016 Posted by | Astrofisica, Planetologia, Scienze dello Spazio | , , , , , | Lascia un commento

eso12 – A caccia di firme biologiche

Questo articolo è l’ultimo di una serie dedicata all’individuazione e allo studio dei pianeti extrasolari, e altri ne seguiranno. La serie ha avuto inizio il 20/7/15 con eso1 – I pianeti extrasolari, imparare le basi. In particolare, oltre al presente, altri due post sono stati dedicati alla spettroscopia del transito, una nuova disciplina che consentirà di stabilire con certezza l’esistenza della vita su altri pianeti tramite l’individuazione di firme biologiche che si sta proprio ora cominciando ad analizzare. I due articoli sono: eso10 – I colori di un mondo che vive e eso11 – I colori della vita extraterrestre. Ambedue possono essere considerati propedeutici al presente articolo. Buona lettura. (RF)

 

 spettroscopia transito JWST firma biologica ossigeno abiotico falso positivo

Immagine: una nuova ricerca del Laboratorio Planetario Virtuale dell’Università di Washington aiuterà gli astronomi a identificare meglio ed escludere i “falsi positivi” nella ricerca della vita. Illustrazione: immagine di un artista di Kepler 62E, a circa 1200 anni luce nella costellazione della Lira. Fonte: NASA

 

Mancano solo due anni al lancio del Telescopio Spaziale James Webb (JWST). Se tutto va bene, il JWST dovrebbe traghettarci nell’era del rilevamento delle firme biologiche, che verrà usato per cercare i segni caratteristici degli organismi viventi nelle atmosfere dei rispettivi mondi. Ma quanto sono sicure queste firme? Una nuova pubblicazione dell’Università di Washington approfondisce il problema dei falsi positivi ed elenca le caratteristiche delle firme che potrebbero fuorviarci.

Un metodo di studio delle firme biologiche è quello della spettroscopia di transito, che usa i dati raccolti dalla luce della stella che attraversa l’atmosfera di un pianeta in transito. Questa tecnica ci consente di analizzare quelle caratteristiche della luce che evidenziano i particolari costituenti dell’atmosfera. Un consistente segnale dell’ossigeno può per forza indicare la presenza di vita? Si penserebbe di sì, perché l’ossigeno nell’atmosfera terrestre, O2, è instabile nel tempo su scala geologica e verrebbe gradualmente consumato dalle reazioni con i gas vulcanici e dall’ossidazione al livello della superficie.

Sul nostro pianeta quindi l’ossigeno necessita di una fonte che lo ricostituisca e che è la fotosintesi di piante e alghe che cercano la luce solare per ottenerne energia. Ma Edward Schwieterman e il suo team pensano che, mentre sulla Terra l’ossigeno abiotico non può raggiungere livelli significativi, può certamente aumentare in altri ambienti planetari. Questo dovrebbe farci riflettere. (1)

Schwieterman, che lavora sotto l’egida del Laboratorio Planetario Virtuale (Virtual Planet Laboratory) dell’università, vede l’ossigeno come un potenziale falsario delle firme biologiche. La creazione abiotica di ossigeno, particolarmente intorno alle stelle di massa piccola che potrebbero essere uno dei primi oggetti di questo tipo di ricerca, può verificarsi quando la luce ultravioletta della stella spezza le molecole di biossido di carbonio, consentendo la formazione di O2 da parte di alcuni atomi di ossigeno. Abbiamo così dell’ossigeno non sostenuto da attività biologica.I modelli al computer di Schwieterman mostrano che questo processo produrrebbe anche trascurabili quantità di monossido di carbonio. Pertanto, la presenza di biossido e monossido di carbonio solleverebbe dubbi sul simultaneo rilevamento di ossigeno nell’atmosfera di un pianeta. I processi abiotici, anziché la vita, potrebbero esserne l’agente. Ciò può essere usato a nostro vantaggio: dato che le firme di CO/CO2 e O di origine abiotica sono più rilevabili con appena 10 transiti rispetto a O2 e O3, il fatto di determinarle con ragionevole certezza può permettere di escludere i pianeti con firme biologiche false per passare invece allo studio di altri pianeti. (2)

L’Osopra menzionato è un secondo tipo di falsario delle firme biologiche, in quanto la luce della stella primaria decompone l’acqua atmosferica sul pianeta roccioso in esame. In questo caso otteniamo grandi quantità di ossigeno dovuto alla fuga dell’idrogeno e possiamo aspettarci di trovare coppie di ossigeno molecolare di breve durata che diventano molecole di O, producendo una firma propria. Come nota Schwieterman, si produce una maggiore percentuale di ossigeno come mai la Terra ha avuto nella propria atmosfera:

 

Certe caratteristiche dell’Osono potenzialmente rilevabili nella spettroscopia di transito e molte altre sono visibili nella luce riflessa. Un segno consistente di O4 potrebbe suggerire che quest’atmosfera ha molto più ossigeno di quanto ne possa essere prodotto biologicamente.

 

Il rilevamento di questo particolare “falsario  delle firme biologiche” è più fattibile per mezzo dell’osservazione diretta, mentre le firme del biossido e del monossido di carbonio sono meglio identificabili tramite la spettroscopia di transito. La ricerca prende in considerazione le simulazioni dello spettro dell’osservazione diretta, in cui l’elevato assorbimento dell’Ofarebbe ipotizzare un’atmosfera a elevato contenuto di ossigeno, molto diverso da quello mai raggiunto dalla Terra.(3)

Schwieterman e il suo gruppo ritengono che i primi pianeti potenzialmente abitabili, di cui studieremo le atmosfere, saranno quelli orbitanti intorno alle stelle nane di classe M. Si tratta del tipo di pianeti con maggiore probabilità di mostrare entrambi i tipi di falsari delle firme biologiche spiegati sopra. Dovremo quindi interpretare potenziali firme biologiche che, senza questi criteri, darebbero adito a confusione. Afferma Schwieterman:

 

La potenziale scoperta della vita al di fuori del Sistema Solare è di tale importanza e foriera di tali conseguenze che dobbiamo essere assolutamente sicuri di aver lavorato bene, di sapere esattamente cosa stiamo cercando e da cosa potremmo essere ingannati quando analizziamo la luce degli esopianeti.

Traduzione e adattamento di FAUSTO MESCOLINI

 

 

FONTI:

La pubblicazione è Schwieterman et al., Identifying Planetary Biosignature Impostors: Spectral Features of CO and O4 Resulting from Abiotic O2/OProduction, Astrophysical Journal Letters Vol. 819, N. 1 (25 febbraio 2016). Riassunto / prestampa. È disponibile anche un comunicato stampa dell’Università di Washington.

Titolo originale: False Positives in the Search for Extraterrestrial Life di Paul Gilster, pubblicato su Centauri Dreams il 2 marzo 2016

NOTE:

1.

In biochimica, sintesi a., la sintesi di composti organici per via chimica, che avviene cioè in assenza di cellule viventi o di loro organuli, N.d.T.

2.

“…nei casi qui esposti, i discriminatori spettrali di O2 e Osono più trascurabili con un’ipotetica osservazione del JWST che con le firme degli stessi O2 e O3. Nello spettro del nostro esempio, né l’O2 né l’Osarebbero direttamente rilevabili con appena 10 transiti, mentre i discriminatori abiotici di CO/CO2 e O4 potrebbero esserlo. Se lo scopo ultimo è quello di definire i pianeti in cui sono ottenibili le firme biologiche, si avrebbe l’opportunità di massimizzare il tempo utile di osservazione. Nel caso in cui gli indicatori spettrali delle firme biologiche false vengano rilevati con ragionevole certezza, piuttosto che approfondire ulteriormente la comunità scientifica potrebbe destinare il tempo restante ad altri obiettivi promettenti.”

3.

“Questo semplice caso di prova dimostra che se le atmosfere a O2 elevato proposte da Luger e Barnes (2015) esistono, la forza di assorbimento della banda dell’Oin tali spettri planetari sarebbe paragonabile o superiore a quella delle bande di O2 monomero. Tali spettri sono qualitativamente differenti dallo spettro della Terra moderna, anche nell’intervallo 0,3-1,0 µm, dato che hanno forma diversa, caratteristiche dell’Opiù ampie e ulteriori caratteristiche provenienti dall’O4. Tutti questi sono segni di un’abbondanza di O2 molto maggiore di quanto abbia mai raggiunto l’atmosfera terrestre, autoregolata da cicli negativi.”

3 aprile 2016 Posted by | Astrofisica, Planetologia, Scienze dello Spazio, SETI | , , , , , | Lascia un commento

Dentro la Zona di Transito

ETZ Zona di Transito metodo del Transito esopianeta pianeta extra-solare ESA missione PLATO SETI firma biologica

Nell’immagine: Banda stretta – Questa immagine mostra la zona di transito, in cui gli osservatori distanti potevano vedere il passaggio della Terra davanti al Sole. Credito e copyright: Axel Quetz (MPIA) / Axel Mellinger, Central Michigan University.

Considerato quanto è efficiente per il rilevamento degli esopianeti il cosiddetto metodo del transito, possiamo ben immaginare che nuove, importanti scoperte siano previste per il futuro. Non passeranno molti anni prima che diventi effettivamente possibile l’analisi dei componenti dell’atmosfera di mondi molto più piccoli dei giganti gassosi che sono allo studio in questo momento, e ciò renderebbe possibile scoprire eventuali firme biologiche. Come ho già ipotizzato in queste pagine, potrebbe davvero succedere di scoprire la vita su un pianeta di una stella lontana prima che riusciamo a trovarla (se esiste) da qualche parte nel nostro Sistema Solare.

Stiamo osservando mondi attorno ad altri soli con qualcosa dello spirito con cui Carl Sagan e la squadra del Voyager, raggiunte mete più lontane, si guardava indietro e vedeva la Terra come “un pallido puntino azzurro”. È il paragone che René Heller e Ralph E. Pudritz tratteggiano nel loro recente documento a proposito della strategia del SETI. Tranne che qui stiamo parlando di osservatori extraterrestri che tengono d’occhio il nostro pianeta, supponendo che se noi possiamo effettuare questi studi utilizzando la tecnologia attuale, altrettanto potrebbero fare altre specie, certamente una dotata di strumenti più evoluti dei nostri.

 

Una sottile striscia di cielo

Consideriamo quindi quella che i ricercatori chiamano Zona di Transito della Terra (ETZ). È quella regione del cielo da cui un’altra civiltà sarebbe in grado di rilevare la Terra come un pianeta che sta transitando davanti al Sole. I dottori René Heller (del Max Planck Institute for Solar System Reseach di Göttingen – Germania) e Ralph Pudritz (MacMaster University, Ontario – Canada) analizzano questa piccola regione di spazio, una striscia attorno all’eclittica proiettata fuori sulla Galassia. L’intera ETZ ammonta a due millesimi della sfera celeste, che è precisamente il motivo per cui piace agli autori. Heller dice:

Il punto chiave di questa strategia è che confina l’area di ricerca in una parte molto piccola del cielo. Di conseguenza, potrebbe volerci meno della durata di una vita umana per stabilire se ci sono o meno astronomi extraterrestri che abbiano trovato la Terra. Potrebbero aver rilevato la sua atmosfera adatta alla vita e cominciato a cercare un contatto con chiunque la abiti.

Ciò che i ricercatori forniscono è lo sviluppo di idee che risalgono quanto meno agli anni ’80, e che vennero discusse in un documento del 1990 scritto dall’astronoma russa L.N. Filippova, la quale presentò una lista di stelle vicine e prossime all’eclittica che sarebbero state un buon bersaglio per SETI. Anche un poster del 2008, esposto presso l’American Astronomical Society e prodotto da Richard Conn Henry, Steve Kilston e Seth Shostak affrontò la questione nel suo abstract:

…. la miglior speranza di successo nel SETI è l’esplorazione della possibilità che esistano alcune civiltà estremamente antiche ma non dedite alla colonizzazione; civiltà che, eoni fa, rilevarono l’esistenza della Terra (ossigeno, e quindi vita), e della Luna (che contribuiva a stabilizzare la sua rotazione) nel corso del transito davanti al Sole (e quindi l’eclittica, che è stabile da milioni di anni). Civiltà che da allora proiettano quantità voluminose di informazioni nella nostra direzione, nella tenue speranza, ora realizzata, che sarebbe apparsa una civiltà tecnologica in grado di riceverle. Mantenere attiva una tale trasmissione mirata sarebbe estremamente economico per una civiltà avanzata.

Ma Heller e Pudritz non si limitano a comunicazioni intenzionali di questo tipo. Che si tratti di radiazione dispersa o segnali diretti, il loro intento è di presentare una descrizione rigorosa e geometrica della ETZ ad uso del SETI, organizzata in due database, uno comprendente almeno 100.000 stelle, mentre l’altro rappresenterebbe un piccolo sottogruppo di 82 stelle vicine alla nostra che possono essere utilizzate come primi bersagli. Gli autori fanno notare che la missione PLATO , che l’ESA prevede di lanciare nel 2024, userà il metodo del transito per trovare piccoli pianeti attorno a parecchie stelle brillanti, come quelle elencate nella lista Heller-Pudritz. PLATO potrebbe persino rilevare i transiti degli esopianeti i cui ipotetici abitanti sarebbero in grado di vedere la Terra transitare davanti al Sole. Aggiunge Heller:

Questo assetto un po’ pazzo offrirebbe sia a noi che a loro la possibilità di studiare il pianeta degli altri col metodo del transito.

In merito alle dimensioni dell’ETZ, il documento fa notare che il disco galattico ha una larghezza di circa 2000 anni luce nel punto dove si trova il Sole. Il lettore tenga a mente che il Sistema Solare è inclinato di circa 63°, il che ci dà una ETZ il cui percorso attraverso il disco galattico è di circa 3260 anni luce. Heller and Pudritz non considerano le nane rosse (classe M), ma puntano l’obiettivo verso le stelle di classe K e G nane (il sole è un astro di classe G2 – ndt). Il documento descrive la selezione delle 82 stelle ad alta priorità.

ETZ Zona di Transito metodo del Transito esopianeta pianeta extra-solare ESA missione PLATO SETI firma biologica

L’astrofisico René Heller

Grazie all’esclusione di tutte le stelle di classe F, A e B, siamo sicuri di prendere in considerazione solamente astri con una vita lunga abbastanza da poter ospitare pianeti abitabili per miliardi di anni. Un approccio più sofisticato farebbe uso dell’età delle stelle (se nota) per le rimanenti stelle di classe K e G, seguendo l’esempio di Turnbull e Tarter, poiché alcuni di questi bersagli potrebbero essere ancora molto giovani, con poco tempo a disposizione per l’emersione di specie intelligenti. Nonostante questo, la maggior parte di tali stelle dovrebbe essere di età simile al Sole, dato che si trova nelle sue vicinanze all’interno della Via Lattea. L’esclusione di giganti e subgiganti ci lascia infine con 45 stelle di classe K e 37 G nane.

Quello che vediamo nella ETZ è un modo di confinare la ricerca SETI in una regione ad alta priorità che si srotola come un nastro di 0,528° lungo l’eclittica, definendo quel luogo dove gli astronomi extraterrestri sarebbero in grado di vedere i transiti non radenti della Terra davanti al Sole. Heller e Pudritz stimano che il numero totale di stelle di classe K e G nane entro 326 anni luce (1 kiloparsec) all’interno della ETZ sia circa 100.000, con stime che indicano i pianeti di tipo terrestre nella zona di abitabilità delle rispettive stelle in un numero stimabile intorno a 10.000. I ricercatori SETI ottengono quindi un’area di ricerca fortemente circoscritta nella quale focalizzare la loro attenzione, mentre andiamo alla ricerca di qualche segno che gli abitanti dei pianeti che possiamo scoprire potrebbero a loro volta aver scoperto noi.

FONTI:

  • Il documento è: Heller, The Search for Extraterrestrial Intelligence in Earth’s Solar Transit Zone,  Astrobiology Vol. 16, No. 4 (2016). Preprint disponibile.

  • Si veda anche il notiziario edito dal Max Planck Institute for Solar System Research. Se siete interessati a scavare negli anni iniziali della storia del concetto di ETZ, fate riferimento al documento della Filippova menzionato sopra, dal titolo A List of Near Ecliptical Sun like Stars for the Zodiac SETI Program Astronomicheskii. Tsirkulyar 1544:37 (1990).

  • Si veda anche il documento del 1998 della Filippova con V. S. Strelnitskij, dal titolo Ecliptic as an Attractor for SETI Astronomicheskii Tsirkulyar 1531:31.

Titolo originale Into the Transit Zone di Paul Gilster – Pubblicato su Centauri Dreams il 9/3/16

Traduzione ROBERTO FLAIBANI
Editing DONATELLA LEVI

26 marzo 2016 Posted by | Astrofisica, Planetologia, Radioastronomia, Scienze dello Spazio, Senza categoria, SETI | , , , , , , , | 2 commenti

SETI: sapere dove guardare

KIC8462852 ATA Gregory Dominik Jim Benford

Immagine: l’Allen Telescope Array, usato di recente per un tentativo SETI su KIC8462852.Credit:ATA.

Qual ‘è il posto migliore per andare a cercare in cielo un segnale SETI? Qui affronteremo  questa tematica SETI con particolare riferimento ad un nuovo articolo di René Heller e Ralph E. Pudritz, che sarà protagonista di un nostro post successivo, ma prima vorrei contestualizzare l’argomento. Con il tentativo SETI sulla stella KCI 8462852 abbiamo svolto una campagna di osservazione mirata utilizzando l’Allen Telescope Array (ATA) per vedere se i ricercatori potessero trovare qualche prova di attività insolita associata con quella stella. Come abbiamo visto dal recente lavoro di Jim e Dominic Benford (vedi Power Beaming Parameters & SETI re KIC 8462852), nella breve finestra di osservazione non è stata trovata alcuna evidenza di impulsi di microonde, nonostante la nostra attrezzatura sarebbe stata in grado di rilevarne diverse tipologie.

 L’anomala curva di luce nei dati di Kepler ha fatto di KIC 8462852 un target di alto profilo. Ciò che la ricerca ATA andava cercando era la radiazione ‘di dispersione’, collegata alle attività di una civiltà tecnologica ma non intesa deliberatamente alla comunicazione con altri. Il fatto che non abbiamo trovato nulla non dovrebbe farci arrivare a conclusioni affrettate. Se volessimo indagare a fondo KIC 8462852 sarebbe necessario uno studio più sistematico e su altre frequenze, e dovremmo avere le risorse per farlo a lungo termine.

E per quanto riguarda la questione delle radiazioni disperse? È interessante che si siano registrati segnali una tantum (il segnale Wow! è uno di questi) che potrebbero essere verosimilmente il risultato di un raggio che ci è passato accanto partendo da un sistema remoto. O, almeno, coerente con questo – ci sono i segnali pulsanti e intermittenti che sono stati rilevati, ad esempio, in una ricognizione del centro della Via Lattea svolta nel 1997 (citata più avanti). Abbiamo anche fonti come GCRT J1745-3009, una sorgente radio transitoria a forti impulsi che non corrisponde alle emissioni di stelle a brillamento, pulsar binarie o altro.

Una civiltà che comunica

Il progetto SETI è cominciato in modo sperimentale nel 1960 con il lavoro di Frank Drake a Green Bank, che monitorò le stelle vicine Tau Ceti ed Epsilon Eridani. L’intenzione era di andare alla ricerca di un segnale diretto, un ‘ciao’ proveniente da un altro sistema stellare, e per un breve, indimenticabile momento, Drake pensò di averne trovato uno (il segnale, ora sappiamo, era locale). Data la natura di un tale impulso diretto, questo sarebbe teoricamente un segnale molto più facile da individuare, poiché rimarrebbe fisso su di noi e sarebbe a livelli di potenza tali che, a differenza delle nostre trasmissioni radiofoniche e televisive, sarebbe in grado di sopravvivere al lungo viaggio interstellare.

Da allora la maggior parte delle campagne di ricerca SETI – ce ne sono state più di 100! – ha  guardato a sistemi vicini o in alcuni casi ad ammassi stellari. Tra il 1995 e il 2004 il Progetto Phoenix del SETI Institute ha lavorato in diversi siti e, secondo Heller e Pudritz (entrambi della McMaster University, Ontario) ha monitorato più di 800 stelle distanti fino a 240 anni luce. Abbiamo fatto ricerche mirate del centro della galassia, osservato con attenzione specifiche stelle come Gl 581 e, nel 2015, abbiamo cercato emissioni laser da più di mille oggetti di interesse di Kepler. E non dimentichiamo il progetto SETI@Home, che attinge ai dati di Arecibo.

Ancora una volta non abbiamo trovato segnali diretti o radiazioni disperse, a meno che alcuni dei segnali di cui abbiamo discusso sopra non siano esempi dell’uno o dell’altro – il cosiddetto segnale di Benford – ci passerebbe accanto come un segnale transitorio che non avremmo potuto identificare senza ulteriori osservazioni.

In termini puramente numerici, ci si aspetterebbe che i segnali di dispersione siano i più abbondanti, in quanto sarebbero generati da molte civiltà tecnologiche e non solo da quelle intente a comunicare con noi. In ogni caso, dove puntare lo sguardo appare chiaro, ed è più che logico rivolgersi verso le regioni del cielo con le più alte densità stellari. Se ETI è là fuori, ci si aspetterebbe di rilevare più attività di segnali laddove ci sono più mondi potenzialmente abitabili.

 

Green-Bank-WV-NRAO

Immagine: il più grande radiotelescopio al mondo completamente movimentabile, a Green Bank, Virginia Occidentale. Frank Drake ha fatto partire il SETI sulle osservazioni da Green Bank nel 1960. Credit: NRAO

Verso il centro della Galassia

Di qui la strategia di ricerca che guarda al centro della galassia prospettata da Gregory, Dominic e Jim Benford in un precedente scritto del 2010, Searching for Cost Optimized Interstellar Beacons, che prevede una ricerca nel piano del disco a spirale. Questo perché il 90% delle stelle della galassia si trova entro il 9% del cielo, nel piano e nel centro della galassia. Dall’analisi:

Qualsiasi forma di vita possa vivere in una zona più centrale rispetto alla nostra deve conoscere la simmetria base della spirale. Questo suggerisce che il corridoio naturale di comunicazione sia lungo il raggio della spirale a partire dal centro della galassia o verso di esso, una direzione semplice nota a tutti. (Seguire un raggio è meglio che puntare lungo un braccio a spirale, poiché il braccio curva allontanandosi dal qualsiasi possibilità di visione rettilinea. D’altro canto, lungo i bracci a spirale vicini a noi le stelle hanno approssimativamente l’età della nostra). Questo percorso massimizza il numero di stelle visibili nel raggio d’azione di un telescopio, soprattutto se si punta al cuore della galassia. Così, un faro posto vicino al centro dovrebbe almeno trasmettere verso l’esterno in entrambe le direzioni, mentre le civiltà più periferiche possono risparmiare la metà dei loro costi non trasmettendo verso l’esterno, dove vi sono molte meno probabilità della presenza di società avanzate.

Ma non è ancora tutto, anzi questo è solo l’inizio. Nel 2004 Robert A. Rohde & Richard A. Muller (UC Berkeley) hanno suggerito che la vita marina sulla Terra seguirebbe un ciclo di 62 milioni di anni, un’idea successivamente sviluppata dagli scienziati secondo la quale il movimento del nostro Sole in verticale al di sopra e al di sotto del piano galattico (un’oscillazione di 62 milioni di anni) farebbe sì che il bow shock (onda d’urto) della galassia produrrebbe un flusso supplementare di raggi cosmici quando il Sole raggiunge la sua posizione più estrema a nord del piano galattico. Questo maggiore flusso potrebbe danneggiare la biosfera, e farebbe presumibilmente altrettanto per qualsiasi mondo abitato.

Potremmo, dunque, avere un piano vicino al centro del disco galattico, forse 500 anni luce in profondità, all’interno del quale ci sono maggiori probabilità di trovare vita intelligente. È interessante notare che le fonti transitorie di maggiore potenza riportate da Carl Sagan e Paul Horowitz in un articolo del 1993 si trovano vicine al piano galattico, e l’idea di una oscillazione verticale di circa 500 anni luce entro la quale la vita intelligente è più probabile ci dà un altro modo di concentrare la nostra ricerca su obiettivi possibili.

 

KIC8462852 ATA Gregory Domink Jim Benford

Immagine: La Via Lattea, stelle e polveri, con le regioni più probabili del cielo in cui cercare segnali SETI. Credit e Copyright: Serge Brunier.

Titolo originale – SETI: Knowing Where to Look  – di Paul Gilster, pubblicato su Centauri Dreams il 8/3/16.

Fonti:

  • Benford G., J., D.: Searching for Cost Optimized Interstellar Beacons Astrobiology 10 (2010), 491-498 (abstract / preprint).

  • L’articolo del 1997 a cui si accenna sopra a proposito  dei segnali transitori è di Sullivan et al.: A Galactic Center Search For Extraterrestrial Intelligent Signals –  Astronomical and Biochemical Origins and the Search for Life in the Universe, IAU Colloquium 161, Publisher: Bologna, Italy, p. 65

Traduzione di DONATELLA LEVI

Editing di ROBERTO FLAIBANI 

24 marzo 2016 Posted by | Astrofisica, Astronautica, Carnevale della Fisica, Planetologia, Radioastronomia, Scienze dello Spazio, SETI | , , , | Lascia un commento

La rivoluzione industriale del Sistema Solare

 completoQualche giorno fa, per puro caso, mi è capitata tra le mani la tesi di laurea di Canio Di Turi,  “Impiego di propellenti raccolti  in  situ nell’esplorazione spaziale”. L’autore si rifece a questa tesi per scrivere per noi l’articolo I primi passi verso l’industrializzazione dello Spazio”. Era il 2011 e non si parlava spesso di ISRU (In situ resources utilization), né tanto meno di ISPP (in situ propellant utilization). Oggi invece la tematica è molto più dibattuta perché, se non altro dal punto di vista minerario, i piccoli corpi celesti del Sistema Solare, vale a dire asteroidi e comete, sono ritenuti obiettivi così interessanti che il Congresso degli Stati Uniti ha emanato recentemente una legge-quadro che sancisce i diritti di proprietà degli imprenditori privati che desiderino occuparsi di estrazione mineraria nello Spazio.

RWGSE sopratutto ha fatto impressione  il numerone 100000000000000 che rappresenta in dollari il valore minerario dei piccoli corpi celesti di cui sopra, e che costituirebbe un ben valido motivo per la nascita di una industria mineraria spaziale. Com’è comprensibile, la tesi di Canio privilegia Marte e in parte la Luna, che sono i due obiettivi  delle prossime missioni pilotate, e dedica poche pagine al Sistema Solare esterno, dove oggi sappiamo invece essere dislocate le maggiori riserve di acqua allo stato liquido (vedasi Europa, la luna di Giove, nonché Encelado, la luna di Saturno) e riduce ad una sola facciata il discorso sui piccoli corpi celesti. Ma la ventina di pagine dedicate a come produrre su Marte il propellente destinato alla sopravvivenza sul pianeta e durante il viaggio di ritorno sulla Terra sono interessantissime, anche se la natura e il linguaggio tecnico della documentazione ne sconsigliano la riproduzione integrale in un blog come questo, dedicato alla divulgazione. Altrettanto dicasi per la Luna, che potrebbe diventare, se non altro in virtù delle 3×1010 tonnellate di ghiaccio presenti a  ciascun polo nelle zone di ombra permanente, avamposto e stazione di rifornimento per l’esplorazione dell’intero Sistema Solare.

MICROSABATIER

Se all’ISPP volessimo aggiungere la miniaturizzazione dei componenti,  i risparmi si farebbero ancora più marcati: l’intero apparato ne risulterebbe alleggerito e ridotto a minori dimensioni, ed entrerebbero in gioco altre tecnologie specifiche che consentirebbero maggiore ridondanza e quindi maggiore velocità di produzione e sicurezza dell’intero impianto. Abbiamo riprodotto qui qualche fotografia per aiutare i lettori a visualizzare ciò che offre oggi la micro-tecnologia. Ci  scusiamo per la bassa qualità del materiale fotografico: facciamo quello che possiamo con ciò che ci viene fornito.

L’autore dedica infine qualche pagina alla produzione di energia elettrica  destinata all’impianto e la creazione di un software capace di controllare autonomamente l’intero impianto anche in completa assenza di aiuti da terra a causa del ritardo-luce che si deve subire nelle telcomunicazioni su grandi distanze.

La tecnologia necessaria all’impresa c’è, anche se ancora non adeguatamente collaudata, e un primo database delle riserve minerarie asteroidali e cometarie è in via di costituzione. Perfino il potere politico si è accorto che siamo alla vigilia di una nuova era industriale, e si è mosso adeguatamente. E’ solo qestione di tempo: la rivoluzione industriale del Sistema Solare è alle porte.

 

ROBERTO FLAIBANI

4 gennaio 2016 Posted by | Astrofisica, News, Planetologia, Scienze dello Spazio | , , , , , , | 1 commento

eso 11 – I colori della vita extraterrestre

Un giorno non lontano avremo gli strumenti in grado di esaminare in profondità la luce proveniente da un mondo di tipo terrestre orbitante intorno ad un’altra stella. Questo apre alla possibilità di identificare gas atmosferici come ossigeno, ozono, anidride carbonica e metano. Tutti questi gas possono trovarsi in un ambiente privo di vita, ma se li troviamo presenti contemporaneamente in quantità abbastanza rilevanti, avremo individuato una possibile firma biologica, perché se non c’è un’attività vitale che li ricostituisce, questi gas si ricombinerebbero e ci lascerebbero con un miscuglio atmosferico molto meno interessante.

Ma studiare le atmosfere dei pianeti per trovare le tracce di vita è solo uno dei modi di procedere. Un team interdisciplinare, guidato da Lisa Kaltenegger della Cornell University e Siddharth Hegde (Istituto Max Planck per l’Astronomia), cioè gli stessi protagonisti dell’articolo pubblicato pochi giorni fa, eso10 – I colori di un mondo che vivesta esaminando la presenza della vita con una rilevazione basata sul colore caratteristico delle forme di vita. Un organismo estraneo che copra gran parte del pianeta, per esempio pensiamo alle foreste sulla Terra, rifletterebbe la luce a particolari lunghezze d’onda, luce che potrebbe essere misurata con la spearth_reflectanceettrometria.

Immagine: In questa immagine satellitare composita della NASA, è possibile vedere una componente dominante verde nella luce riflessa del sole, un segno diretto della vita vegetale presente sulla superficie terrestre. Allo stesso modo, se la vita microbica con una particolare pigmentazione coprisse vaste zone di superficie di un pianeta extrasolare, la sua presenza potrebbe in linea di principio essere misurata direttamente grazie alla sua tinta nella luce stellare riflessa osservata attraverso i nostri telescopi. Credit: NASA Earth Observatory.

 La sfida, e quindi l’impegno del lavoro preliminare basato su questi presupposti, è quello di capire quali tracce spettrali i diversi tipi di organismo potrebbero emettere. Lavorando con i colleghi al centro di ricerca Ames della NASA , i ricercatori hanno messo insieme un catalogo tratto da colture di 137 diverse specie di microrganismi, alla ricerca di una vasta gamma di pigmentazioni delle specie presenti in ambienti diversi, come il deserto di Atacama in Cile, l’acqua marina delle Hawaii, un vecchio pezzo di legno trovato in un parco dello Stato del Missouri e le sorgenti di acqua calda del Parco Nazionale di Yellowstone. Concentrandosi sulle specie estremofile (in cui la vita è spinta al suo limite), il team ha potuto fare indagini sulla più ampia gamma possibile di condizioni fisiche e geo-chimiche sulla superficie dei pianeti extrasolari. 

Il metodo, preso in esame in un nuovo saggio su Proceedings of the National Academy of Sciences, consiste nel misurare l’impronta digitale chimica di ogni coltura di microorganismi e pubblicare i risultati in un catalogo on line. Gli spettri di riflessione sono prodotti nella lunghezza d’onda del visibile e nel vicino infrarosso e sono organizzati nella prima banca dati di questo tipo dedicata alle tracce di vita superficiale. Il catalogo era progettato per rispecchiare la più ampia gamma di vita possibile, sapendo che sul nostro pianeta le specie dominanti hanno subito profondi cambiamenti.

Dal documento:

Sebbene ci sia una considerevole conoscenza di base delle proprietà spettrali delle piante terrestri, sono pochissime le informazioni presenti in letteratura riguardo a quelle dei microorganismi. Le piante terrestri sono attualmente molto diffuse sul pianeta e sono facilmente rilevate dalle osservazioni ad alta risoluzione delle sonde spaziali. Comunque, esse occupano solo una piccola nicchia nel parametro ambientale che raggruppa la vita terrestre conosciuta. Inoltre, le piante terrestri si sono diffuse sulla Terra solo circa 460 milioni di anni fa, mentre gran parte della storia della vita è stata dominata dalla vita microbica unicellulare. All’interno degli organismi procarioti ed eucarioti c’è una diversità di pigmentazione di gran lunga maggiore che nelle piante terrestri. Per questa ragione tutte le ipotesi riguardo a una vita extraterrestre basate soltanto sulle piante terrestri finiscono per tralasciare una gran parte della vita conosciuta.”


standard_sans_rightImmagine: Otto dei 137 campioni di microrganismi utilizzati per misurare le firme biologiche per il catalogo. In ogni pannello, la parte superiore è una fotografia standard del campione e la parte inferiore è una microfotografia, una versione ingrandita a 400x dell’immagine superiore. Gli scienziati miravano a raggiungere una diversità di colori e pigmentazione. Da in alto a sinistra a in basso a destra: specie sconosciute del genere Bacillus (deserto di Sonora, AZ, USA); specie sconosciuta di genere Arthrobacter (Deserto di Atacama, Cile); Protothecoides Chlorella (linfa di un pioppo bianco danneggiato); specie sconosciuta di genere Ectothiorhodospira (Big Soda Lake, NV, USA); specie sconosciuta di genere Anabaena (con proteina fluorescente verde, d’acqua dolce stagnante); specie sconosciuta di genere Phormidium (Kamori Canale, Palau); Porphyridium purpureum (legno vecchio presso una sorgente salata, Boone’s Lick State Park, MO, USA); Dermocarpa violacea (deflusso di acquario, La Jolla, CA, USA). Credit: Hegde et al. / MPIA.

Gli organismi unicellulari che hanno dominato la storia della Terra hanno prosperato per 3.5 miliardi di anni e forse più, dimostrando ripetutamente di poter essere trovati nelle condizioni più estreme , dall’interno dei reattori nucleari (Chernobyl) ai deserti e alle regioni polari. La loro particolare pigmentazione dipenderà dalle condizioni ambientali locali e così la loro futura scoperta grazie ai telescopi spaziali ci dirà qualcosa riguardo al pianeta che essi abitano. L’indice di riflessione da parte delle forme di vita superficiali gioca anche un ruolo importante nei modelli per gli esopianeti che possono essere usati per studiare i processi chimici delle loro atmosfere.

Il presente comunicato stampa dell’MPIA riassume i metodi del team per la misura delle biotracciature, compito svolto da Hegde lavorando con Lynn Rothschild e altri ricercatori dell’Ames della NASA :

Hegde, [Ivan] Paulino-Lima e [Ryan] Kent hanno misurato le firme biologiche dei campioni presso il Centro di Tecnologie Spaziali e Telerilevamento (CSTARS) presso l’Università della California, Davis. Hanno adoperato una struttura chiamata sfera di integrazione, cava e rivestita internamente di un materiale riflettente. Questa conteneva un foro per la sorgente luminosa, il campione del microorganismo, e un rilevatore per misurare l’impronta digitale della luce riflessa dal campione. L’effetto della forma sferica è il seguente: quando la luce attraversa il foro e si riflette sul campione, si distribuisce in modo uniforme in tutte le direzioni. Pertanto il rilevatore può essere posizionato in qualsiasi punto della sfera, contro qualsiasi parte della parete, e ancora misura la stessa media (“integrata”) di impronta. Questo è importante perché in un futuro prevedibile i telescopi saranno solo in grado di misurare la luce riflessa da un esopianeta che è stato valutata in media (“integrata”) su tutta la parte visibile della superficie del pianeta.” Lisa Kaltenegger, che dirige l’Institute for Pale Blue Dot della Cornell University, all’ampia gamma di possibilità di vita, inclusi gli organismi estremofili, che si trova nel database, dicendo che “… ci dà il primo assaggio di ciò che i diversi mondi là fuori potrebbero sembrare … Sulla Terra questi sono solo ambienti di nicchia, ma in altri mondi queste forme di vita potrebbero anche avere un ruolo dominante, e ora abbiamo un database per sapere come possiamo individuarlo”. La banca dati, che è aperta per il libero uso dei ricercatori di tutto il mondo, si trova presso l’Istituto. Ulteriori aggiunte al database sono attese in futuro, man mano che nuovi campioni saranno disponibili per catalogare spettri di indice di riflessione microbica.

traduzione di SIMONETTA ERCOLI

editing di DONATELLA LEVI

Further additions to the database are expected in the future as more samples become available to catalog microbial reflectance spectra. The paper is Hegde et al., Surface biosignatures of exo-Earths: Remote detection of extraterrestrial life,” in Proceedings of the National Academy of Sciences, published online before print March 16, 2015 (abstract available). The catalog is Surface biosignatures of exo-Earths, now available online.Original title of this postThe Colors of Extraterrestrial Life by Paul Gilster, published on March 17, 2015 on “Centauri Dreams”.

9 dicembre 2015 Posted by | Astrofisica, Planetologia, Scienze dello Spazio | , , , , , , | 4 commenti

eso10 – I colori di un mondo che vive

Questo articolo è stato pubblicato da Centauri Dreams il 5 ottobre 2012. Tre anni non son pochi in un settore in tumultuoso sviluppo come quello degli esopianeti, e abbiamo dovuto riscrivere completamente il primo capoverso per evitare che l’articolo risultasse obsoleto. In un successivo post, che apparirà tra breve, incontreremo di nuovo i protagonisti di ieri e potremo apprezzare gli sviluppi del loro lavoro. (RF)

32549Gliese 581d sembrava sempre più essere considerato un pianeta della zona abitabile, come Siddharth Hegde  (studente per il dottorato in Astronomia all’Istituto Max Planck) e Lisa Kaltenegger (Harvard-Smithsonian Center for Astrophysics e direttore del Carl Sagan Institute) avevano spiegato in un nuovo saggio. Essi stavano concentrando la loro attenzione su come caratterizzare un pianeta extrasolare roccioso e puntavano su HD 85512b e Gliese 667Cc nonché su Gl581d come esempi, ma ipotizzavano anche che avremmo rilevato sempre più mondi nella zona abitabile man mano che il telescopio spaziale Kepler continuava il suo lavoro. Ma Kepler, ancor oggi il più famoso cercatore di esopianeti, per un guasto a un giroscopio avvenuto nel 2013, si trova ora impossibilitato a continuare la sua missione come era stata originariamente concepita.

Nella foto: Siddharth Hegde

In assenza di missioni quali Terrestrial Planet Finder della NASA o Darwin dell’ESA, che ci permetterebbero di analizzare l’atmosfera di un esopianeta con i biomarcatori, cos’altro possiamo fare per trovare i luoghi dove esiste la vita? Hegde e Kaltenegger concentrano la loro attenzione sul colore di un pianeta per trovare la risposta. Più precisamente sono interessati a ciò che è conosciuto come diagramma colore-colore, che sfrutta il fatto che un oggetto può essere osservato a diverse lunghezze d’onda, con una magnitudine diversa che si evidenzia in ciascuna banda osservata. ‘Colore’, in questo senso, si riferisce alla differenza di luminosità tra le diverse bande, facilmente tracciata su un diagramma colore-colore.

Lisa KlateneggerAnalizzare un esopianeta nella lunghezza d’onda del visibile in un diagramma colore-colore può rivelare qualche proprietà fisica di base del pianeta, supponendo che la copertura di nuvole non crei problemi. Il nuovo documento pone l’attenzione sui tipi di ambiente della Terra che possono dare supporto a forme estreme di vita e considera come potremmo identificare ambienti equivalenti su un esopianeta. Piccoli cambiamenti di temperatura, pH o altri fattori fisici o geochimici… possono far sì che questo tipo di ambienti siano dominanti in un esopianeta potenzialmente abitabile, fattore che potrebbe guidare l’evoluzione della vita. Questi vari ambienti “estremi” sulla superficie della Terra hanno albedo caratteristiche nella banda del visibile (0.4 µm – 0.9 µm) che potrebbero essere distinguibili da remoto. Pertanto, noi studiamo le impronte dei colori che si ottengono dagli ambienti superficiali abitati dalle specie estremofile così come mettiamo alla prova il nostro metodo utilizzando gli spettri di riflessione misurati per gli estremofili.

nella foto: Lisa Kaltenegger

Naturalmente, rilevare caratteristiche di superficie in uno spettro di riflessione non equivale di per sé a rilevare la vita e gli autori sono pronti a sottolineare che il loro metodo è una diagnosi che deve essere utilizzata in combinazione con uno studio dell’atmosfera dei pianeti extrasolari. Ma il documento è un interessante tentativo di mettere in parallelo le caratteristiche note degli ambienti abitati da estremofili con l’astronomia osservativa, riconoscendo che quando arriveremo al punto in cui potremo studiare i mondi rocciosi lontani attraverso immagini reali, lavoreremo a bassissima risoluzione, ai limiti dei nostri strumenti.

Tuttavia, c’è molto che possiamo fare per distinguere la percentuale di superficie coperta da acqua o vegetazione o deserto, un metodo che dovrebbe permetterci di dare la priorità ai pianeti extrasolari più adatti per la spettroscopia in follow-up. Il metodo si basa su studi precedenti del bordo rosso della vegetazione provocato dall’assorbimento nel vicino infrarosso dello spettro durante la fotosintesi, ma espande quel lavoro fino a prendere in considerazione diverse forme di vita che possono vivere sopra o sotto la superficie. Le Piezophilae, per esempio, prosperano sottoposte all’estrema pressione oceanica, mentre le Halophilae crescono in alte concentrazioni di sale.

spettro1Anche se alcuni organismi estremofili – licheni, colonie batteriche e alghe rosse – possono essere rilevati con misurazioni dirette dell’albedo, non avremmo modo di rilevare direttamente molte specie estremofile in uno spettro di riflessione. Possiamo fare un lavoro comunque utile: l’idea è quella di identificare il tipo di caratteristiche di superficie che sarebbero comuni negli ambienti che permettono al loro interno la vita ad organismi estremofili. E la gamma di superfici caratteristiche che possono essere rilevate da questi metodi è ampia: si va da acqua, neve e sale a sabbia, alghe rosse e alberi.

Ci sono moltissime componenti imprevedibili, tra cui il tipo di stella intorno a cui orbita il pianeta, che potrebbero avere un profondo effetto sull’impronta della vegetazione. Man mano che rileviamo pianeti rocciosi intorno a diverse classi di stelle, dovremo di conseguenza modificare i nostri metodi. Dall’articolo:

… L’impronta della clorofilla dei pianeti intorno a stelle calde, potrebbe avere un “bordo blu” per riflettere una parte della radiazione ad alta energia per impedire il surriscaldamento delle foglie… L’impronta della clorofilla dei pianeti in orbita attorno a stelle più fredde potrebbe apparire nera a causa dell’assorbimento totale di tutta l’energia nella banda del visibile tale per cui le piante ottengono tutta la luce possibile per il metabolismo fotosintetico … Pertanto, le posizioni di alberi, colonie microbiche e licheni [sul diagramma mostrato nell’articolo] sono valide solo per un pianeta simile alla Terra che orbiti intorno ad una stella simile al Sole e dovrebbero essere prese come elementi indicativi. L’albedo della vegetazione e degli organismi produttori di clorofilla in presenza stelle non simili al Sole richiede ulteriori studi.”

spettroIl documento di Hegde e Kaltenegger ci indica il primo tipo di lavoro che saremo in grado di eseguire su un pianeta extrasolare nella zona abitabile, una volta che saremo stati in grado di acquisire una sua immagine diretta. Lavorando con organismi estremofili, i ricercatori stabiliscono i limiti ambientali per la vita sul nostro stesso pianeta, base utile per i nostri primi esami in altri mondi di tipo terrestre. La fotometria di base nel visibile usata qui può fornire un primo passo per sondare questi pianeti identificandone i colori caratteristici, collegandoli a nicchie ambientali che permettono la vita. Dovremmo poi attendere che vengano lanciati nello spazio gli strumenti necessari per analizzare le atmosfere di obiettivi di alto valore.

ATTENZIONE: NOTIZIE DELL’ULTIMO MINUTO

Lettera aperta a Facebook

Avviso agli amministratori dei  Gruppi FB

 

Titolo originale: “Colors of a living world” by Paul Gilster, pubblicato il 5 ottobre 2012 su Centauri Dreams. Abbiamo consultato inoltre il documento denominato “Colors of Extreme ExoEarth Environments” in Astrobiology (preprint).

Traduzione di SIMONETTA ERCOLI

Editing DONATELLA LEVI

23 novembre 2015 Posted by | Astrofisica, Astronautica, Planetologia, Scienze dello Spazio, Senza categoria | , , | 4 commenti

%d blogger hanno fatto clic su Mi Piace per questo: