Il Tredicesimo Cavaliere

Scienze dello Spazio e altre storie

Ci siamo quasi…

locandina tredicesimo cavaliere blog facebookpage web2.0

 

A breve sarà on-line il nuovo blog: “IL TREDICESIMO CAVALIERE 2.0“, che si propone di stupire i fedelissimi e di coinvolgere sempre più appassionati ed esperti di scienze delle spazio e fantascienza.    

Il Team di autori e  in particolar modo il responsabile supremo, sua eccellenza Roberto Flaibani, stanno lavorando a ritmi serratissimi  con l’intento di creare un ambiente accogliente, che riesca a coinvolgere e a nutrire la sete di conoscenza verso ciò che ci circonda. 

Completamente rinnovato in grafica e funzionalità, ma sulla consolidata  linea guida del suo predecessore, Il Tredicesimo Cavaliere 2.0 vi invita a lasciare commenti, idee e suggerimenti al fine di prepararsi al meglio al suo lancio.

 

31 maggio 2016 Posted by | 4th Symposium IAA - SETI, Astrofisica, Astronautica, by G. de Turris, Carnevale della Chimica, Carnevale della Fisica, Carnevale della Matematica, Ciberspazio, Cinema e TV, Difesa Planetaria, Epistemologia, Fantascienza, Giochi, Letteratura e Fumetti, missione FOCAL, News, NON Carnevale della Fisica, Planetologia, Radioastronomia, Referendum Prima Direttiva, Scienze dello Spazio, Senza categoria, SETI, Volo Interstellare | Lascia un commento

ALLA VIA COSI’, YURI !

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

Yuri Milner e Stephen Hawking presentano Breakthrough Starshot

L’imprenditore e filantropo russo Yuri Milner nemmeno un anno fa aveva messo in subbuglio la comunità astronomica mondiale offrendo tramite la società Breakthrough Listen (consociata della capogruppo Breakthrough Initiatives), un finanziamento di 100 milioni di dollari perché venisse risolto uno degli interrogativi più profondi e complessi che l’uomo si è posto da quando ha cominciato ad esplorare lo Spazio: “Siamo soli nell’Universo? Se non lo siamo, dove sono gli Altri?”.

Ora, attraverso un’altra consociata, la Breakthrough Starshot, e con un secondo finanziamento di 100 milioni di dollari, Milner si propone di realizzare uno studio completo per l’attuazione di un volo interstellare fino ad Alfa Centauri della durata di 20 anni, che costerà tra i cinque e i dieci miliardi di dollari. L’iniziativa è stata presentata il 12 aprile a New York ed è stata seguita da un animato brainstorming per addetti ai lavori che si è appena concluso a Palo Alto, in California.

 

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

Una vela fotonica laser-assistita in assetto di volo

 

Da brillante stratega qual’è, nella nuova Breakthrough Starshot Milner ha voluto personaggi di prim’ordine: nel consiglio di amministrazione ha confermato Stephen Hawking e cooptato Mark Zuckerberg, fondatore e presidente di Facebook, mentre ha dato l’incarico di direttore a Pete Worden, che per questo ha rinunciato a un analogo incarico presso l’Ames Research Center della NASA. Milner si avvale inoltre di un gruppo di consiglieri di chiara fama, tra i quali da Harvard l’astronomo Avi Loeb, dall’Inghilterra l’Astronomo Reale Martin Rees, da Berkeley il Nobel Saul Perlmutter, da Princeton Freeman Dyson, matematico ed esponente di primo piano del SETI, e Ann Druyan, vedova di Carl Sagan e produttrice della serie televisiva “Cosmos, a Spacetime Odissey”.

 

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

La batteria laser in procinto di fare fuoco

 

Prima di passare a un primo approfondimento, facciamo un po’ di storia. Si era nei giorni a cavallo tra settembre e ottobre 2011 e a Orlando (Florida) si svolgeva il congresso di formazione del 100YSS, il primo movimento di opinione che si proponeva di realizzare il volo interstellare. Era composto di professori e studenti universitari e da una moltitudine colorata di space-enthusiast mobilitati da dozzine di gruppi e associazioni, in un’atmosfera degna di Woodstock. In realtà la convention era frutto dell’intuizione di alcuni pezzi grossi della NASA e sopratutto della DARPA, l’agenzia per la tecnologia avanzata del Pentagono, che aveva fornito all’operazione copertura finanziaria e mediatica, con una formula tutta americana impensabile nel nostro paese. Non è dunque Milner, bensì sono i militari del Pentagono i primi ad avere intuito la potenzialità di mercato e la capacità di innovazione scientifica e tecnologica che un rinnovato interesse allo spazio in questi termini potrebbe destare. Le iniziative di Milner, e degli altri Paperoni che speriamo ne seguano l’esempio, nonostante le differenze rappresentano il logico sviluppo e coronamento della strategia targata DARPA.

 

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

 

Ricordiamo ai lettori che un’informazione sommaria sui particolari tecnici e organizzativi dell’impresa è già stata trasmessa dai media. Ci limiteremo quindi a elencare i punti caldi, fornendo però un’accurata lista di link per chi vuole approfondire.

La tecnologia di base

Le Nanotecnologie e il loro turbinoso sviluppo, sono alla base della proposta della Breakthrough Starshot. Infatti Alpha Centauri, lontana 4,3 anni luce, non sarà raggiunta da una singola astronave, ma da uno sciame di centinaia di nanosonde spaziali di cui esistono già modelli sperimentali chiamati Sprite, ma qui conosciuti come “Starchip”. Trattandosi di una missione di fly-by senza equipaggio, non sono possibili manovre di rientro: dopo aver raggiunto Alpha Centauri, le nanosonde superstiti si perderanno nello spazio.

 

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

Nanotecnologie in azione: un prototipo dello Sprite

 

La navigazione

La tecnica della vela fotonica laser-assistita. Questa tecnica è stata allo studio per molti anni sopratutto ad opera del fisico americano  Robert Forward, ma è stata sempre giudicata irrealizzabile fino alla nascita delle nanotecnologie.

Per muoversi, ogni nanosonda sarà abbinata a una vela fotonica di forma quadrata e di 4 metri per lato, costruita con materiali di nuova concezione  estremamente leggeri e robusti, e, una volta raggiunta l’orbita terrestre verrà accelerata da un impulso laser lanciato dal suolo in direzione di Alfa Centauri fino alla velocità di 60.000 km/sec,  pari al 20% della velocità della luce.

La propulsione

La batteria di laser che farà da propulsore sarà riutilizzabile per varie missioni. Nella sua configurazione principale, quella Starshot, la batteria dovrà essere in grado di emettere almeno una volta al giorno un impulso della potenza di 100 gigawatt e della durata di 2 minuti, e poi ricaricare. Ma si potrebbe usare per spedire sciami di starchip ovunque nel Sistema Solare e verso le stelle più vicine con compiti diversificati. Potrebbe essere utilizzata come arma di Difesa Planetaria , ma purtroppo anche come super-arma in conflitti sulla Terra.

 

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

La missione FOCAL

 

Le telecomunicazioni a lungo raggio

Mantenere telecomunicazioni efficienti tra le nanosonde e la base a terra, probabilmente il  Deep Space Network (DSN) della NASA, è indispensabile per il successo della missione. Ma Claudio Maccone, Presidente del Comitato Permanente SETI in seno all’ International Academy of Astronautics di Parigi e autore di profondi studi su questo tema, dice:

Se usiamo il Sole come una lente gravitazionale possiamo mantenere i contatti con le nostre sonde anche a distanze interstellari. Questa è la chiave per esplorare i dintorni del Sistema Solare nei secoli a venire. Anche civiltà aliene potrebbero avere scoperto questo metodo per comunicare a lunga distanza. Se cosi fosse, potremmo entrare a far parte di un vero e proprio Internet interstellare.

Il nostro Sole potrebbe effettivamente rivelarsi il migliore dispositivo possibile per le telecomunicazioni, se la sua gravità potesse essere usata per creare una sorta di radiotelescopio gigante in grado di mandare e ricevere segnali enormemente amplificati. L’astronomo Slava Turyshev del Caltech ha parlato di un “guadagno d’antenna” dell’ordine di 1011 per radiazioni nella gamma ottica. Questa enorme “magnificazione” potrebbe essere sfruttata con radiazioni di qualsiasi lunghezza d’onda, per esempio nella gamma radio. Anzi, si potrebbe creare una rete ancora più potente posizionando delle sonde relais vicino ad altre stelle per formare ponti radio attraverso il grande vuoto interstellare.

Ponti radio “gravitazionali”

Per crearne uno si dovrebbe cominciare piazzando una sonda relais in corrispondenza del fuoco più vicino della lente gravitazionale del Sole, situato alla distanza di 550 Unità Astronomiche (UA) da esso. Quindi all’altro capo del ponte, continuando con l’esempio di Alpha Centauri, deve essere piazzata una seconda sonda relais per potenziare i segnali in entrata e uscita.
Con questi relais in posizione, la percentuale d’errore nelle trasmissioni tra i due capi del ponte crollerebbe da 1 su 2 , a 1 su 2 milioni, pari all’accuratezza raggiunta dal DSN della NASA nell’ambito del Sistema Solare. Sorprendentemente, la potenza di trasmissione richiesta è davvero minima, appena un decimo di milliwatt, come dire svariati ordini di grandezza in meno delle antenne del DSN.
Tuttavia la realizzazione di un sistema radio interstellare basato su lenti gravitazionali darebbe un gran da fare agli ingegneri. Tanto per cominciare, i ripetitori dovrebbero restare precisamente allineati uno rispetto all’altro e ai loro amplificatori stellari anche su distanze estreme, afferma Maccone. Ciò richiederebbe un sistema rivoluzionario di navigazione celeste e orientamento, una sorta di GPS galattico basato sulle pulsar. Ma anche se effettivamente questi ponti radio potrebbero consentirci di tenere i contatti, il limite universale della velocità della luce (e quindi dell’informazione) scoperto da Einstein, implica che il dialogo avrebbe comunque tempi lunghissimi. Data la distanza, una conversazione con una colonia su un ipotetico mondo abitabile (tipo “Avatar”), nel sistema di Alpha Centauri, avrebbe un ciclo domanda–risposta di quasi nove anni.

Attualmente non c’è soluzione al problema del ritardo nelle telecomunicazioni- dice Maccone -Ma la buona notizia è che adesso abbiamo un modo affidabile per comunicare attraverso distanze interstellari.

 

 

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

Il Sole a confronto col sistema di Alpha Centauri

 

Concludiamo qui il primo articolo dedicato a Breakthrough Starshot sapendo già che torneremo spesso ad occuparcene.

ROBERTO FLAIBANI

27 aprile 2016 Posted by | Astrofisica, Astronautica, Difesa Planetaria, missione FOCAL, News, Scienze dello Spazio, SETI, Volo Interstellare | , , , , , , , , , , , , | 2 commenti

Sulla rotta di Rama

oneill rama 1

Interstellar è ancora in proiezione nelle sale di tutta Italia e a qualcuno potrà sembrare strano che noi si esca con un articolo come questo, che descrive la visione della storia futura dell’uomo nello spazio di cui si è fatto alfiere  Stephen Ashworth (BIS). Tale visione é infatti radicalmente diversa da quella di Christofer Nolan, ma, proprio grazie ad Interstellar, questo è un momento di grande dibattito, favorevole anche per far conoscere le idee di Ashworth, e noi ne vogliamo approfittare.

Ma prima facciamo un po’ di storia recente: …
Nell’ottobre del 2011, a Orlando in Florida, ha preso vita il progetto One Hundred Years Starship (100YSS), ribattezzato da noi “L’astronave dei Cent’Anni”, con l’obbiettivo di creare entro un secolo le condizioni necessarie per poter pianificare la costruzione della prima astronave interstellare. L’iniziativa è stata direttamente ispirata e finanziata dal Pentagono, tramite l’agenzia DARPA, sostenuta entusiasticamente dalla parte meno ortodossa della comunità scientifica e dai cosiddetti space enthusiasts, e un po’ timidamente dalla NASA. Nonostante il programma fosse ambiziosissimo e proiettato su un arco temporale di secoli, la classe politica americana ha dimostrato di capire le enormi potenzialità del programma nella ricerca avanzata che potrebbe portare grandi benefici all’umanità come ricaduta degli investimenti effettuati.

rotta rama 5A quattro anni da quel fatidico 2011, si può assistere negli USA a due congressi annuali organizzati l’uno dal 100YSS stesso con taglio multidisciplinare,  l’altro dalla Icarus Interstellar, ONG dedicata a tematiche di ingegneria aerospaziale, astronautica e fisica esotica. Numerose altre iniziative minori si svolgono localmente. In Europa la British Interplanetary Society (BIS), ineguagliato think-tank che raccoglie scienziati e ricercatori specializzati in Scienze dello Spazio, nonché numerosi scrittori di fantascienza, fin dal 1930 sventola la bandiera dell’interstellare.

Nonostante il cosiddetto movimento interstellare sia appena agli inizi, si trova già ad affrontare domande e problemi di grande portata. Il primo scoglio è la velocità della luce, nel suo essere, allo stesso tempo, irraggiungibile ma di valore troppo basso di fronte all’enormità delle distanze da percorrere. Questo limite costituirà in prospettiva un vero e proprio collo di bottiglia destinato a  rallentare l’espansione dell’Uomo nello spazio. Dobbiamo favorire o ignorare le ricerca di una nuova fisica “esotica” che ci consenta di dribblare il limite superiore più claustrofobico dell’universo? Avremo finalmente un sistema di propulsione “ultraluminale” degno di Star Trek? Impareremo davvero a percorrere i wormhole? Non ne abbiamo la minima idea. Sappiamo però che le tecnologie più in uso nella fantascienza per muovere persone e cose da un punto all’altro dell’universo sono sostanzialmente due: il motore a curvatura, con cui sono equipaggiate le astronavi, e il wormhole, conosciuto anche come stargate. Ambedue, si badi bene, non sarebbero esclusi o negati dalla Teoria della Relatività, ma in qualche modo ammessi da essa. Ad oggi esiste solo una minoranza di ricercatori che segue questo approccio radicale e indaga a 365 gradi sul problema della propulsione, in parte raccolti nella Tau-Zero Foundation: pochi ma buoni, e molto determinati. Li seguiremo con attenzione.

oneill rama 2Se invece abbracciamo l’altro presupposto, e cioè che la velocità della luce sia insuperabile in qualsiasi circostanza senza eccezioni o scorciatoie di sorta, allora è giunto il momento di ascoltare le idee di Stephen Ashworth. Secondo il ricercatore inglese, l’uomo continuerà ad espandersi nel SS (Sistema Solare) alla velocità  consentita dalla tecnologia di propulsione disponibile in quel momento. Le sonde robotizzate  raccoglieranno grandi successi, mentre i progetti di colonizzazione umana saranno limitati e rallentati soprattutto dal peso dell’ignoranza che l’uomo sconta nei confronti della forza di gravità: ne sappiamo poco o nulla e siamo in grado di produrla solo tramite rotazione. Ma tuttavia dipendiamo da essa perché il nostro corpo non sopravvive a lungo fuori da un ambiente in cui la gravità non sia compresa tra 0,80G e 1,20G, valori che immediatamente malediciamo perché costituiscono una tassa salata da pagare ogni qual volta dobbiamo lanciare in orbita qualcosa.

rotta rama 2Ma esistono veramente le condizioni per creare qualche insediamento su Venere e Marte ? Venere è un vero e proprio inferno, e Marte offre una misera gravità pari a solo 0,38G. Non così nella Fascia degli Asteroidi e tra i Troiani di Giove, vaste aree popolate da asteroidi di natura rocciosa, insieme a qualche interessante pianeta nano. I grandi pianeti esterni si riveleranno probabilmente troppo inospitali per noi (intense emissioni radioattive, gravità e condizioni meteorologiche estreme) ma non sarà necessariamente così per le loro lune, che potrebbero offrire condizioni interessanti di abitabilità e colonizzabilità, cominciando da Europa, Ganimede e Titano. Altri candidati per ospitare un insediamento potrebbero essere i pianeti nani della Fascia  di Kuiper, con i loro oceani d’acqua sotterranei, specialmente i Plutoidi. Infine, nella Nube di Oort, i nostri esploratori potrebbero trovare miliardi di nuclei spenti delle comete di lungo periodo, ancora ricchi di gas e varie sostanze chimiche di cui potrebbero approvvigionarsi. Potrebbero anche garantire  la manutenzione delle sonde FOCAL e i nodi della rete di pre-allarme della Difesa Planetaria, se noi Terrestri saremo così preveggenti da progettarla. Questo processo, questa lunga migrazione che ci porterà agli estremi confini del SS durerà secoli ed è considerato da Ashworth come l’ultimo atto, comunque non conclusivo, del processo che ha portato l’Uomo a popolare ogni angolo della Terra e ora ad affacciarsi sul SS. Naturalmente, quando si verificheranno le condizioni  necessarie e sufficienti, qualcuno tenterà anche il volo interstellare sub-luce, la tecnologia minima è già a portata di mano, almeno per quanto riguarda le sonde automatiche.

rotta rama 1Nel frattempo si  saranno messi in moto, secondo Ashworth, nuovi meccanismi che porteranno a inediti cambiamenti sociali e culturali. Oggi uomini e donne nascono sulla superficie di un mondo, la Terra, ed è perciò naturale che pensino in termini di risorse planetarie e della ricerca di nuove Terre. Ma tra qualche secolo le cose potrebbero andare diversamente. Costruiti nello spazio, e non più sulla Terra, saranno in piena efficienza impianti estrattivi, ma anche  fabbriche manifatturiere, centrali solari per la produzione di energia elettrica, laboratori, impianti turistici e quant’altro, dove via via saranno impiegate migliaia di persone, e quindi alloggiate non sulle inospitali superfici planetarie, ma a bordo di grandi astronavi che potranno offrire collegamenti in telepresenza con gli impianti, gravità artificiale, aria e acqua costantemente riciclate e filtrate, colture idroponiche e tutto quanto di meglio la tecnologia dell’epoca potrà offrire.
Si verrebbero quindi a creare due culture differenti: i discendenti di quella attuale, nata e basata sulla Terra, che cercheranno sulle superfici planetarie nel SS o fuori di esso l’obiettivo per la loro espansione, e una nuova forma di civiltà, basata nello spazio, tendenzialmente nomade e composta da generazioni di individui nati e vissuti in habitat artificiali e ad essi psicologicamete abituati. Sempre in viaggio, indifferente alla conquista di nuovi spazi sulle superfici planetarie, tendenzialmente pacifica  e  dedita all’esplorazione, questa nuova Umanità basata nello spazio sarebbe naturalmente portata a costruire habitat sempre più grandi per dare sfogo all’aumento della popolazione. Queste enormi biosfere semoventi sono state chiamate astronavi-arca o astronavi generazionali, e sono frutto della fantasia di un grande fisico di Princeton, Gerard O’Neill, e del talento letterario di Arthur Clarke che le ha immortalate nel suo romanzo “Incontro con Rama”.
Così, dice Ashworth, una volta esplorato in lungo e in largo il SS, l’Umanità affronterà alla fine le tanto temute distanze interstellari. Messe in soffitta definitivamente le teorie della fisica esotica, la grande diaspora dovrà aprirsi la strada  attraverso l’Universo a bordo delle sue astronavi gigantesche, a suo agio nello spazio vuoto, lasciando le superfici dei pianeti, e la Terra,  a coloro che sono rimasti indietro.

ROBERTO FLAIBANI

 

FONTI:

  • Stephen Ashworth, JBIS vol.65 – # 4,5, The Emergence of the Worldship (I): The Shift from Planet-Based to Space-Based Civilisation
  • Stephen Ashworth, JBIS vol.65 – # 4,5, The Emergence of the Worldship (II): A Development Scenario
  • Toward a Space-Based Civilization, by Paul Gilster, published on Centauri-Dreams on March 11, 2013

26 novembre 2014 Posted by | Astrofisica, Astronautica, Fantascienza, missione FOCAL, News, Scienze dello Spazio, Volo Interstellare | , , , , , , , | Lascia un commento

Mathematical SETI, non solo radiotelescopi

Prefazione foto 1-bisSul finire dell’agosto 2012, appare per la prima volta, in lingua inglese ad opera dell’editore Springer, il volume “Mathematical SETI”, dove Claudio Maccone raccoglie e aggiorna il suo ventennale lavoro sull’algoritmo per le telecomunicazioni KLT, la missione FOCAL, il progetto PAC, e finalmente la sua ultima fatica, la completa revisione delle basi matematiche del SETI e la conseguente rivalutazione degli aspetti sociologici della nuova Formula di Drake. Un libro difficile, a detta dell’autore stesso, diretto agli scienziati, ai ricercatori, difficilmente reperibile al di fuori dell’ambito accademico. Forse per fare ammenda col vasto pubblico degli space enthusiast, Maccone ha voluto scrivere una lunga prefazione, dove, con un linguaggio non specialistico, tenta di spiegare i concetti più importanti del suo lavoro. Vi presentiamo qui la traduzione della prima parte, dedicata agli aspetti matematico-sociologici del SETI. (RF)

copertina libroSETI (Search for Extra Terrestrial Intelligence), la moderna ricerca di un’intelligenza extraterrestre, iniziò nel 1959 con la pubblicazione dell’articolo pionieristico “Searching for Interstellar Communications”, di Giuseppe Cocconi (1914-2008) e Philip Morrison (1915-2005), pubblicato su Nature, Vol. 184, n° 4690, pp. 844-846, 19 settembre 1959. Appena un anno dopo, nel 1960, Frank Drake iniziò il radio SETI sperimentale con il progetto Ozma, in cui per la prima volta cercò di captare possibili segnali extraterrestri vicino alla frequenza radio di 1420 megahertz, la riga di emissione dell’idrogeno neutro. Vide così la luce il moderno radio SETI, tuttora in piena attività grazie agli enormi progressi compiuti nel settore delle strumentazioni elettroniche e degli algoritmi matematici elaborati dai computer per rilevare i segnali alieni. Solo qualche anno dopo, nell’incontro su SETI presso L’Osservatorio Nazionale di Radio Astronomia di Green Bank, West Virginia, Frank Drake offrì un altro contributo fondamentale, conosciuto attualmente sotto il nome di “equazione di Drake”. Tale equazione viene descritta nel Capitolo 1 del libro, insieme alla sua estensione per l’equazione che comprende probabilità e statistiche, scoperta da questo autore nel 2007 e presentata per la prima volta nel 2008. Quest’analisi occupa i primi 11 capitoli di questo libro.

PARTE I – STATISTICHE SETI. Questa prima parte del libro è composta da 11 capitoli.

Capitolo 1 – L’equazione statistica di Drake. Questo capitolo mostra come la classica equazione di Drake, il prodotto di sette numeri positivi, possa essere sostituita dal prodotto di sette variabili positive casuali, che prende il nome di “equazione statistica di Drake”. Questa modalità è scientificamente più consistente in quanto ogni valore in entrata (input) della classica equazione di Drake è accompagnato ora dal segno che contraddistingue l’approssimazione (~)In altre parole, gli input puramente numerici della classica equazione di Drake diventano ora i valori medi delle corrispondenti variabili casuali, ai quali dovrà essere addizionata o sottratta una certa deviazione standard (che dovrà essere trovata sperimentalmente), come è d’uso in ogni serio articolo scientifico. Le conseguenze matematiche di questa trasformazione vengono spiegate, dimostrando che la nuova variabile casuale N, relativa al numero di civilizzazioni della Galassia in grado di comunicare, deve seguire la distribuzione di probabilità lognormale qualora si permetta che il numero dei fattori nell’equazione di Drake aumenti a piacere. Questo risultato offre la possibilità di inserire nell’equazione di Drake un numero sempre maggiore di fattori, consentendole di essere più rappresentativa della realtà fisica: per esempio, la fine di una civiltà in seguito all’impatto di un asteroide era assente nella formulazione di Drake del 1961, probabilmente perché fu solamente nel 1980 che la scomparsa dei dinosauri come conseguenza dell’impatto di un asteroide fu accettata dalla comunità scientifica. Il Capitolo 1 ricava anche un’altra distribuzione di probabilità chiamata “distribuzione di Maccone” da Paul Davies e altri), che fornisce la funzione di densità di probabilità (pdf) della distanza tra due qualsiasi civiltà vicine nella Galassia. Questo è di importanza capitale per SETI, in quanto spiega come difficilmente si possa sperare di localizzare forme di civiltà aliene a una distanza inferiore a 500 anni luce. La spiegazione più naturale per l’apparente fallimento di 50 anni di ricerca SETI (1960-2010) è che il motivo per cui non le abbiamo individuate dipende semplicemente dal fatto che i nostri attuali radiotelescopi non arrivano a una distanza sufficiente, poiché si possono spingere al massimo a distanze di 100-200 anni luce.

Capitolo 2 – Lasciare che sia Maxima a fare i calcoli. Questo capitolo introduce gli studenti e i giovani ricercatori al piacere di poter fare a meno dei calcoli scritti ricorrendo a Maxima, un programma di algebra liberamente scaricabile. In pratica il lettore troverà in appendice ai vari capitoli tutti quei codici Maxima che l’autore ha dovuto ricavare da solo per dimostrare le diverse equazioni fornite per la prima volta nel libro. Si tratta di un’assoluta novità per il genere di libri fortemente matematici come questo: non soltanto non ci vergogniamo di dimostrare ai nostri lettori la bellezza di SETI, dell’astrofisica e dell’elaborazione dei segnali, ma insegniamo loro come ricavare importanti nuovi risultati grazie a Maxima e Mathcad. Un paio di esempi come dimostrazione: nelle Appendici 2.A e 2.B deriviamo le proprietà statistiche della distribuzione lognormale, di importanza centrale per l’equazione statistica di Drake illustrata nel Capitolo 1, e, come dimostrazione delle notevoli capacità di Maxima nel calcolo tensoriale, ricaviamo l’universo chiuso di Einstein del 1917 (fondamentale per la cosmologia), le equazioni di Friedman del 1924, e il conseguente numero di protoni dell’universo, il famoso 1080 ricavato da Dirac nel 1937 (cosmologia di Dirac).

Capitolo 3 – Quanti pianeti per l’uomo e per gli alieni? Questo capitolo presenta al lettore l’equazione di Dole (1964). Da un punto di vista matematico quest’equazione è uguale a quella di Drake, ma si applica al numero di pianeti abitabili della Galassia, piuttosto che al numero di civiltà della Galassia in grado di comunicare. Estendendo dunque il nostro studio alla classica equazione di Dole del 1964 arriviamo alla conclusione che nella Galassia dovrebbero esistere all’incirca 100 milioni di pianeti abitabili dall’uomo, più una deviazione standard di 200 milioni. Non male per la futura espansione del genere umano nella Galassia, sempre che si sopravviva ai molti pericoli che dovremo affrontare nei secoli a venire, quali le avversità fisiche e l’opposizione da parte degli alieni. Avendo trovato nel Capitolo 1 la distribuzione di probabilità della distanza fra due civiltà aliene, nel Capitolo 3 scopriamo che la stessa distribuzione di probabilità si applica alla distanza tra due pianeti vicini abitabili – dopo aver cambiato i numeri (ma non le equazioni), ovviamente.

Capitolo 4 – Paradosso statistico di Fermi e viaggi intergalattici. Questo capitolo affronta il tema della possibile espansione nella Galassia di una civiltà, umana o aliena che sia. L’idea centrale è che la quantità di tempo richiesta per l’espansione nello spazio sia determinata sostanzialmente da due fattori: (1) la velocità dei veicoli spaziali utilizzati per saltare da un pianeta abitabile al successivo; (2) il tempo necessario per colonizzare un nuovo pianeta da zero trasformandolo in una base da cui partire per i successivi viaggi spaziali. Assumiamo che la prima variabile (la velocità della nave spaziale) sia essenzialmente deterministica, e non richieda un’elaborazione statistica. Assumiamo anche, però, che la seconda variabile (il tempo di colonizzazione) segua la distribuzione lognormale, di nuovo come conseguenza del fatto che il numero dei fattori sconosciuti è così grande da avvicinarsi all’infinito. Viene qui usato il Teorema Centrale del Limite della statistica, come si è fatto rispettivamente nel Capitolo 1 per trovare la distribuzione di N e nel Capitolo 3 quella di NHab. Partendo da questi presupposti, il modello statistico per la crescita dei coralli nel mare applicato all’espansione di una civiltà nella Galassia ci permette di determinare la distribuzione di probabilità del tempo complessivo necessario a una data civiltà per espandersi attraverso l’intera Galassia. I calcoli diventano piuttosto complicati, e soltanto un uso assennato di Maxima ci ha permesso di trovare le distribuzioni di probabilità pertinenti. Si tratta ovviamente di un ampliamento statistico del famoso paradosso di Fermi, fino ad ora affrontato dagli altri autori in contesti banalmente deterministici.

Capitolo 5 – Quanto a lungo può vivere una civiltà? Questo capitolo cerca di affrontare il valore totalmente sconosciuto dell’ultimo termine dell’equazione di Drake: quanto a lungo potrebbe sopravvivere una civiltà tecnologica? Poiché nessuno lo sa – dato che siamo noi stessi siamo l’unico esempio a disposizione – in questo capitolo la discussione si limita alle variazioni del numero N a seconda che si tratti di civiltà di lunga piuttosto che di breve durata. Gli esempi numerici offerti in questo capitolo sono l’estensione statistica dei corrispondenti valori deterministici dati da Carl Sagan nel suo libro (e serie TV) Cosmos (1980).

doppio click per ingrandire

Prefazione foto 3

Capitolo 6 – Modelli matematici che abbracciano tutta la vita, tramite funzioni b-lognormali finite. Questo capitolo contiene del materiale profondamente innovativo, considerato dall’autore uno dei migliori modelli matematici concepiti da lui fino ad ora, nei suoi 64 anni di vita. L’idea è la seguente. Tutti gli esseri viventi sono nati, ciascuno al suo momento (t = b = birth (nascita)), poi sono cresciuti durante l’adolescenza (t = a = adolescenza), poi hanno raggiunto il loro punto più alto nel picco (t = p = picco), seguito dalla senilità (t = s = senilità), e infine dal decesso (t = d = death (morte)). Esiste una funzione finita della densità di probabilità che ha un simile comportamento nel tempo? Sì, esiste, e si chiama b-lognormale. Cos’è una b-lognormale? E’ semplicemente una ordinaria lognormale (μ,σ) che comincia per un valore positivo del tempo, cioè t = b > 0 piuttosto che t = 0. La sua equazione richiede lo scivolamento del valore d’inizio verso un nuovo istante positivo t = b > 0, che noi chiamiamo b-lognormale, perché questa funzione della densità di probabilità sembra non avere ancora un nome. Ma gli altri quattro punti nel tempo menzionati sopra hanno invece un immediato significato matematico: (1) il tempo dell’adolescenza (t = a) è l’ascissa del punto di flessione ascendente; (2) il picco (t = P) è ovviamente l’ascissa del punto massimo; (3) il tempo della senilità (t = s) è l’ascissa del punto di flessione discendente; (4) il tempo della morte (t = d) è l’ascissa del punto in cui la tangente alla senilità incrocia l’asse del tempo, e questo trucchetto matematico ci permette di sbarazzarci dell’estremità finita a destra, rimpiazzandola con un ovvio punto finito. Tali sono, quindi, le b-lognormali. Ora, il Capitolo 6 è interamente dedicato a scoprire nuove equazioni matematiche che esprimano i due parametri sconosciuti (μ,σ) come funzioni di qualcuno dei valori di input noti, come il momento della nascita (t = b), più due delle quattro variabili di input rimanenti (a, p, s, d). L’autore è stato in grado di scoprire alcune equazioni finite di questo tipo, e probabilmente ne esistono ancora altre sconosciute, ma quello che è stato in grado di scoprire è stato sufficiente per scrivere i Capitoli 7 e 8, di centrale importanza rispettivamente per la “storia matematica” e per la “evoluzione matematica darwiniana”. In chiusura l’autore deriva un’espressione per la funzione di densità di probabilità finita delle b-lognormali per normalizzare di nuovo a 1, invece della costante ordinaria di normalizzazione delle lognomrali ordinarie.L’insieme di questi nuovi risultati è un importante passo in avanti che ci permette di rimpiazzare la montagna di parole utilizzate al giorno d’oggi per descrivere l’evoluzione darwiniana e la storia matematica con un semplice insieme di distribuzioni statistiche in accordo con l’equazione statistica di Drake e SETI.

Capitolo 7 – Civiltà storiche come b-lognormali finite. Applichiamo i risultati del Capitolo 6 alla storia matematica. Calcoliamo e confrontiamo le b-lognormali finite di otto civiltà che hanno influito maggiormente sulla storia del mondo negli ultimi 3.000 anni: la Grecia antica (600 a.C.-30. a.C.), la Roma antica (753 a. C.–476 d. C.), l’Italia rinascimentale (1250–1600), il Portogallo (1419–1974), la Spagna (1492–1898), la Francia (1524–1962), la Gran Bretagna (1588–1974), e gli Stati Uniti (1898–c. 2050). Si potrà obiettare che tutte queste civiltà appartengono al cosiddetto mondo occidentale, ciò nonostante è in Occidente che negli ultimi 3.000 anni troviamo le civiltà più avanzate. È altamente probabile che in futuro l’Asia sostituisca l’Occidente alla guida dell’umanità, ma allo stato attuale, nel 2012, si tratta di un’eventualità ancora incerta. Così queste otto [funzioni] b-lognormali sono confrontate sullo stesso grafico dove emerge chiaramente una sorta di “inviluppo superiore”: si tratta di una curva esponenziale che, più o meno, abbraccia tutte le b-lognormali come luogo geometrico dei loro picchi! Il risultato principale è in questo caso il fatto che nel b-lognormali diventano sempre più strette con il passare del tempo (cioè, i loro picchi diventano sempre più elevati) e questo rivela il progresso (cioè, un crescente grado di civilizzazione). Per rendere questo risultato quantitativo, piuttosto che solamente qualitativo, abbiamo bisogno di una nuova unità di misura per la “quantità di evoluzione” raggiunta da una data civiltà in un dato momento, proprio come i metri misurano la lunghezza, i secondi misurano il tempo, i coulomb misurano la carica elettrica, eccetera. Chiamiamo questa nuova unità di evoluzione “darwin”, e la introduciamo nel capitolo successivo, che si occupa dell’evoluzione darwiniana. Il motivo per cui lo facciamo è perché nella scienza “misurare vuol dire capire”.

doppio click per ingrandire

Prefazione foto 4

Capitolo 8 – Un modello matematico per l’evoluzione e SETI. L’“inviluppo esponenziale” che era appena accennato nel precedente capitolo, ora si delinea chiaramente come il collegamento tra l’evoluzione darwiniana e la famiglia di b-lognormali vincolata tra l’esponenziale e l’asse temporale. Innanzitutto definiamo l’evoluzione darwiniana semplicemente come la crescita esponenziale del numero di specie viventi sulla Terra che ha caratterizzato gli ultimi 3,5 miliardi di anni di vita sulla terra. In altre parole, presumiamo che 3,5 miliardi di anni fa apparve il primo e unico organismo vivente (RNA?) e tracciamo una curva esponenziale che collega quel punto alle attuali circa 500.000 specie viventi. Questa curva esponenziale è dunque il luogo geometrico dei massimi della famiglia, con un solo parametro, di b-lognormali (il parametro variabile della famiglia è il tempo b di nascita di una qualsiasi nuova specie) tenendo conto della cladistica (cioè la moderna teoria dell’evoluzione che si basa rigorosamente su quando una nuova specie appare nel corso dell’evoluzione, e non su asserzioni tassonomiche rudimentali e semplicistiche). Detto ancora in altro modo, ogni nuova specie è una curva esponenziale, in leggero aumento o diminuzione nel tempo, che si diparte dall’ “esponenziale principale” (l’inviluppo complessivo) quando una nuova specie ha origine. Come ulteriore nuovo risultato, ricaviamo anche la distribuzione di probabilità “NoEv” o “Non Evoluzione” per una data specie, vale a dire la funzione della densità di probabilità (pdf) che si applica quando una data specie non subisce alcun cambiamento per un lunghissimo tempo (cioè quando i suoi membri nascono, crescono, si accoppiano, invecchiano e muoiono per milioni o miliardi di anni senza che il loro numero aumenti o diminuisca in modo significativo). Stranamente questa nuovissima distribuzione di probabilità risultante dalla nostra teoria non è più un lognormale o un b-lognormale. È qualcosa di nuovo, come una legge statica dell’evoluzione, e il fatto che l’articolo che affronta appunto la tematica “NoEv” sia stato pubblicato in una rivista come OLEB (Origine della Vita ed Evoluzione delle Biosfere) significa che non stiamo parlando di assurdità.

Capitolo 9 – Statistiche sociali secondo l’equazione statistica di Drake. Questo capitolo si occupa di una nuova possibilità risultante dall’equazione statistica di Drake, ovverossia come derivare matematicamente nuovi risultati statistici relativi ad argomenti precedentemente sconosciuti da dati statistici già noti. L’argomento sconosciuto in questo caso è la “componente sociale” dell’equazione di Drake (cioè il prodotto dei suoi ultimi tre termini fi·fc·fL). Questi tre termini corrispondono rispettivamente a: (1) fi la probabilità che su un pianeta già brulicante di vita possa nascere la vita intelligente (cioè superiore alle scimmie), come è accaduto nel caso della storica evoluzione dell’umanità sin dalla sua apparizione sulla Terra circa 7 milioni di anni fa fino alla scoperta delle onde radio, le quali rendono possibile la comunicazione tra civiltà aliene diverse nella Galassia (l’esistenza delle onde radio fu compresa matematicamente per la prima volta nel 1864 da James Clerk Maxwell come soluzioni sinusoidali per le sue appena scoperte equazioni di Maxwell); (2) fc corrisponde alla fase in cui una civiltà è in grado di comunicare utilizzando strumenti radio, laser o persino neutrini, fase che per gli esseri umani è storicamente iniziata nel 1864 e continua tutt’oggi; (3) fL corrisponde alla durata di vita complessiva di una civiltà, dal suo inizio fino alla sua fine (ad esempio come risultato dell’impatto di un asteroide, della vicina esplosione di una supernova, di una stella o di un pianeta vaganti che alterano la stabilità gravitazionale del sistema stellare interessato, o anche a causa di guerre nucleari tra gli alieni), di cui non sappiamo assolutamente nulla. Detto questo, il Capitolo 9 suggerisce che potremmo sapere qualcosa (vale a dire una distribuzione statistica) relativa alla “componente sociale” fi . fc . fL riscrivendola come il rapporto fi .fc . fL = N/(Ns . fp . ne . fl) = N/NHab Poiché le distribuzioni di probabilità di N e NHab sono entrambe note (lognormali rispettivamente delle equazioni di Drake e di Dole) tutto si riduce a calcolare la nuova distribuzione di probabilità del rapporto fra due lognormali, che non è un lognormale ma un’altra distribuzione più generale ricavata da noi nel Capitolo 9.

Capitolo 10 – Equazioni cubiche di ripresa storica. Carl Sagan nel suo libro (e serie TV) Cosmos illustra con chiarezza i mille anni di progresso perduti dall’umanità tra la caduta dell’Impero Romano d’Occidente (476 d. C.) e la fase di ripresa del Rinascimento Italiano (circa 1400 d. C.). Nel Capitolo 10 trasformiamo tutto ciò in una semplice (forse semplicistica) curva matematica: una cubica (cioè un’equazione algebrica di terzo grado come funzione del tempo). Mostriamo come i suoi valori numerici corrispondano abbastanza bene al progresso storico nei seguenti campi: (1) astronomia dal 1000 a. C. al 2000 d. C., (2) SETI tra il 1450 e il 2000, (3) ricerca di esopianeti tra il 1950 e il 2010, (4) unificazione dell’Europa tra il 1750 e il 2010, (5) aspettativa di vita umana tra il 10000 a. C. e il 2000 d. C. estrapolata fino al 3000 d. C. e il 10000 d. C. Tutti questi risultati sono presentati come semplici modelli matematici di ciò che appare essere una “legge della ripresa storica” delle civiltà umane, che si potrebbe forse estendere anche ad altre civiltà aliene… naturalmente solo se SETI ha successo.

Capitolo 11- L’evoluzione esponenziale nel tempo come moto geometrico browniano. L’equazione statistica di Drake, descritta nel capitolo 1 e successivi, è statica (non cambia nel tempo). Fu solo l’8 gennaio 2012 che questo autore si rese conto che la sua equazione di Drake statistica statica altro non era che una istantanea di un processo probabilistico molto importante chiamato “moto geometrico browniano” (GBM), che assomigliava piuttosto a un film che a una istantanea. Ma GBM è un processo probabilistico molto importante, probabilmente il più importante di tutti: in effetti è stato dimostrato nel 1973 che si tratta dell’equazione chiave nel modello matematico “Black-Scholes”, oggi usato quotidianamente nella matematica finanziaria. Robert C.Merton fu il primo a pubblicare una relazione scientifica che espandeva la comprensione matematica del modello “option-pricing” e coniò il termine “modello Black-Scholes di option-pricing”. Merton e Scholes ricevettero il premio Nobel per l’economia nel 1997 e per quanto non designabile per il premio perchè deceduto nel 1995, Black fu menzionato dall’Accademia Svedese per il suo contributo. Detto questo, noi dimostriamo nel capitolo 11 che il GBM è in realtà lo stesso numero N(t), che aumenta esponenzialmente, delle civiltà in grado di comunicare nella Galassia, soggetto comunque all’incertezza. In altre parole: come l’intelligenza e la tecnologia continuano a evolvere, il sopracitato numero N(t) di civiltà exterrestri nella Galassia aumenta esponenzialmente, ma col rischio che alcune civiltà possano sparire improvvisamente a causa di un impatto asteroidale, l’esplosione di una supernova vicina, pianeti o stelle vagabondi che distruggono la stabilità gravitazionale del sistema stellare al quale si avvicinano, o perfino a causa di guerre nucleari tra extraterrestri. Perciò, il valor medio di N(t) cresce esponenzialmente nel come N(t) = N0eµt , ma N(t) stesso è un processo casuale con massimi e minimi, dato in sostanza da: formula corta

cioè un GBN, essendo B(t) il moto Browniano standard (0, 1). Fin qui tutto bene, ma dopo questa scoperta siamo andati avanti: abbiamo scoperto la funzione della densità di probabilità (pdf) del processo stocastico della distanza (“processo Maccone”?) data da:

formula lunga

Questa ovviamente si riduce alla distribuzione di distanza “Maccone” tra due qualsiasi civiltà ET discussa nel Capitolo 1 per il caso statico, il che è anche la distribuzione della distanza tra due pianeti abitabili vicini (con quantità diverse) come dimostrato nel Capitolo 3. Perciò, in conclusione, crediamo che il Capitolo 11 sia il capitolo più importante di questo libro perché apre la strada a future considerazioni statistiche riguardo agli ET e le loro distanze nella Galassia.

Traduzione DONATELLA LEVI

Editing FABRIZIO BERNARDINI

23 aprile 2013 Posted by | Astrofisica, Astronautica, missione FOCAL, Radioastronomia, Scienze dello Spazio, SETI, Volo Interstellare | , , , , , , , , | 3 commenti

Fisico, matematico, visionario

Avesse avuto due vite, una l’avrebbe dedicata alla matematica, l’altra all’astrofisica. Dovendo accontentarsi, s’è votato a entrambe con tantissima passione e, ça va sans dire, pochissimo tempo libero.

 Il dott. Claudio Maccone, nel corso del Congresso Internazionale di Astronautica svoltosi recentemente a Napoli, è stato eletto Presidente del Comitato Permanente SETI in seno alla IAA. Sostituisce Seth Shostak, presidente per due mandati, ed è il primo italiano, anzi il primo non-americano a ricoprire tale carica.

 Laureato in fisica e matematica col massimo dei voti, Maccone nel 1980 ha ottenuto un dottorato in matematica al King’s College di Londra, con una tesi sulla Trasformata di Karhunen-Loeve (KLT). Si tratta di un algoritmo in uso nelle telecomunicazioni, estremamente utile in ambito SETI, perché rende possibile evidenziare con grande accuratezza eventuali segnali captati da un radiotelescopio, isolandoli dal rumore cosmico di fondo e da qualsiasi disturbo elettromagnetico. Ancora oggi, però, la quasi totalità dei ricercatori SETI sta utilizzando, per l’analisi dei dati, l’antiquata Trasformata Veloce di Fourier (FFT), che prende in esame solo dati in banda stretta e a grande velocità. KLT invece garantisce maggior sensibilità e lavora in banda larga, ma richiede tempi di elaborazione molto più lunghi. Maccone è oggi uno dei più convinti sostenitori dell’implementazione della KLT ovunqe si faccia SETI.

 A partire dal 1985, Maccone ha lavorato a lungo presso l’azienda aerospaziale Aeritalia (oggi Thales Alenia Space) alla progettazione di satelliti artificiali, come il QUASAT e il Tethered Satellite. Nel 1993 propone provocatoriamente all’ESA di realizzare la cosidetta missione FOCAL, ambizioso progetto per lo studio e l’utilizzo della cosidetta Lente Gravitazionale del Sole, un fenomeno naturale di grande potenza. In pratica, la gravità solare deflette e mette a fuoco la luce dei corpi celesti occultati dal Sole, ottenendo, nel fuoco, magnificazioni di enorme entità. Il fuoco si trova però alla distanza di 550 Unità Astronomiche (UA), ben oltre i confini del Sistema Solare. Si tratta quindi di un’impresa lunga e rischiosa, ai limiti dell’attuale tecnologia, che però darebbe all’Uomo il controllo su uno strumento di straordinaria potenza.

 Nel 2010 la IAA lo chiama a ricoprire l’incarico di Direttore Tecnico per l’Esplorazione Scientifica dello Spazio. Inoltre è responsabile del progetto “Lunar Farside Radio Lab/PAC Project”, e in questa veste nel giugno 2010 ha elevato formale richiesta all’ONU, perchè un’area situata sulla faccia nascosta della Luna, denominata Cerchio Antipodale Protetto (PAC), venga permanentemente mantenuta nello stato di radio-quiete in cui si trova attualmente. Infatti il corpo stesso della Luna esercita un effetto schermante contro l’inquinamento elettromagnetico proveniene dalla Terra, e in futuro ciò permetterà di disporre del PAC come località ideale dove costruire grandi radiotelescopi.

 Numerosi i riconoscimenti ricevuti, tra cui il prestigioso “Giordano Bruno Award” con la suggestiva e significativa menzione: “ […] Dr. Maccone is, significantly, the first Italian to win the Bruno award, which was established in 1995 and is dedicated to the memory of Giordano Bruno, the Italian monk burned at the stake in 1600 for postulating the multiplicity of inhabited worlds”.

 Instancabile anche nella sua attività divulgativa, il nostro ha scritto oltre 70 articoli tecnici e scientifici, perlopiù pubblicati nella rivista “Acta Astronautica”, nonché quattro libri in lingua inglese, due per IPI Press: Telecommunications, KLT and Relativity e The Sun as a Gravitational Lens: Proposed Space Missions, e due per Springer: Deep Space Flight and Communications (2009), e Mathematical SETI (2012).

 Nel suo ultimo libro, in uscita proprio in questi giorni, Maccone riprende e aggiorna i suoi temi più conosciuti, ossia la missione FOCAL e l’algoritmo KLT, ma sopratutto presenta un progetto molto ambizioso al quale sta lavorando da anni, cioè la revisione dell’intero impianto matematico del SETI. Maccone ha riformulato in chiave statistica sia la famosa equazione di Drake, che fornisce il numero di civiltà extraterrestri presenti nella Galassia, sia quella di Dole, che fornisce il numero dei pianeti abitabili. Un primo, importante risultato è la scoperta di una nuova curva di distribuzione che il noto fisico Paul Davies ha battezzato “La distribuzione di Maccone”, dalla quale si evince che la probabilità di trovare una civiltà aliena a una distanza dal Sole inferiore a 500 anni-luce è virtualmente pari a zero. Ma i nostri attuali radiotelescopi sono in grado di rilevare eventuali segnali d’origine artificiale a una distanza massima di 200 anni-luce: ecco perché il SETI non ha potuto registrare, fino a oggi, alcun risultato positivo.

 “Si tratta di un libro dedicato a un pubblico di esperti, non è assolutamene un’opera a carattere divulgativo – dice lo stesso Maccone – ma è qualcosa di cui la comunità scientifica internazionale ha davvero bisogno. E’ un tentativo di connettere discipline scientifiche considerate fino a oggi indipendenti tra di loro: l’astronomia, l’evoluzione della vita sulla Terra e altrove nell’Universo, l’astronautica (sopratutto per quanto riguarda i viaggi interstellari a velocità relativistiche), e la storia matematica. Combinare tutto questo in una sorta di descrizione matematica unificata, era qualcosa che andava fatto.”

 Claudio Maccone viene considerato oggi uno dei più importanti scienziati SETI a livello mondiale. In suo onore, l’International Astronomical Union (IAU) ha battezzato col suo nome l’asteroide 11264.

ROBERTO FLAIBANI

 

13 ottobre 2012 Posted by | Astrofisica, Astronautica, missione FOCAL, Scienze dello Spazio, SETI | , , , , , , , | 8 commenti

Viaggio al fuoco della Lente Gravitazionale del Sole

Comunicato Stampa n.9

Il dott. Gregory Matloff è Professore Emerito al Dipartimento di Fisica del New York City College of Technology, CUNY, a Brooklyn, New York, USA. E’ inoltre membro dell’Accademia Internazionale di Astronautica (IAA) e della British Interplanetary Society (BIS). Greg ha pubblicato più di 100 relazioni scientifiche e tecniche, mentre come autore o co-autore ha firmato 9 libri di astronomia e astronautica, incluso The Starflight Handbook (Wiley, 1989) e Solar Sails (Springer 2008). Tra il 1999 e il 2007 ha collaborato con il Marshall Space Flight Center della NASA come consulente per la propulsione spaziale e la Difesa Planetaria dall’impatto di asteroidi. Il dott. Matloff interverrà mercoledì 26 alle 12:00 con una relazione dal titolo “A Solar/Nuclear Mission to the Sun’s Inner Gravity Focus”, dove si prospetta la possibilità di raggiungere il fuoco della Lente Gravitazionale del Sole con una sonda automatica a propulsione mista nucleare/solare. Si tratta dell’ormai nota missione FOCAL, proposta dal nostro dott. Claudio Maccone.

La Lente Gravitazionale è un fenomeno naturale di grande potenza che ha effetto sull’intero spettro elettromagnetico. La Lente Gravitazionale del nostro sole  (GLS) potrebbe diventare in futuro lo strumento principe per l’osservazione astronomica e le telecomunicazioni interstellari. Da molti anni a questa parte, il dottor Claudio Maccone è il massimo studioso di questo fenomeno e propugnatore della missione FOCAL, che ha come primo obiettivo di raggiungere il cosidetto fuoco del “sole nudo”,  situato a 550 Unità Astronomiche (UA) dal Sole, ben oltre l’orbita di Plutone (40 UA). Da lì la sonda continuerà ad allontanarsi lungo l’asse focale fino alla distanza di 1000 UA, sfruttando per le sue osservazioni le prestazioni della GLS. Niente di costruito dall’Uomo è mai arrivato così lontano, nemmeno l’intramontabile Voyager 1, che ha da poco superato le 110 UA. Ma varrebbe davvero la pena di andarci, perchè le prestazioni promesse dalla GLS sono assolutamente eccezionali. La Natura ci offre, a poco più di tre giorni-luce dalla Terra (a tanto equivale, infatti, la distanza di 550 UA) uno strumento d’indagine di ineguagliabile potenza.  In questi ultimi anni la comunità scientifica ha finalmente dato segno di aver preso coscienza delle potenzialità della GLS e del valore dal lavoro di Maccone, tant’è che FOCAL viene ora considerata la più importante tra le cosiddette missioni antesignane del volo interstellare.

Joseph Breeden ha ottenuto il dottorato di ricerca dall’università dell’Illinois per il suo lavoro sulla Teoria del Caos in Astrofisica, con ricerche specifiche sulle dinamiche caotiche degli ammassi globulari di stelle. Nella sua carriera ha utilizzato le dinamiche non-lineari e l’analisi dei dati per molte applicazioni scientifiche e finanziarie inclusa la “dendrocronologia” (l’analisi dei cerchi di accrescimento annuale degli alberi), le proiezioni sul numero dei partecipanti per il SETI@home, le previsioni sulla crisi dei mutui negli Stati Uniti e le previsioni sull’andamento dei raccolti. Nel 2010 ha pubblicato il libro intitolato Reinventing Retail Lending Analytics e oggi guida la Prescient Models. L’intervento di Joe Breeden si terrà mercoledì 26 alle 12:20 e avrà per titolo: “Gravity Assist via Near-Sun Chaotic Trajectories of Binary Objects”

Ulteriori informazioni sono disponibili su http://www.sanmarinoscienza.org

Per assistenza e foto in alta definizione rivolgersi a : agenda@sanmarinoscienza.org

Con il patrocinio di: Segreteria di Stato per il Turiso e lo Sport; Segreteria di Stato per la Cultura; Università degli Studi – Repubblica di San Marino. INAF – Istituto Nazionale di Astrofisica.  COSPAR – Committee on Space Research.

Organizzatori: San Marino Scienza.  CVB – Convention & Visitors Bureau – San Marino.  IAA – International Academy of Astronautics.

Collaboratori scientifici: UAI – Unione Astrofili Italiani. Radiotelescopi di Medicina. SETI ITALIA – Team G. Cocconi. IARA – Italian Amateur Radio Astronomy. FOAM13 – Fondazione Osservatorio Astronomico Messier 13.  Carnevale della Fisica.  Scientificando. Associazione Culturale Chimicare. Carnevale della Chimica. Il Tredicesimo Cavaliere.

Sponsor: Banca Agricola Commerciale – San Marino.  Asset Banca – San Marino.

17 settembre 2012 Posted by | 4th Symposium IAA - SETI, Astrofisica, Astronautica, missione FOCAL, Radioastronomia, Scienze dello Spazio, SETI, Volo Interstellare | , , , , , , , , | 3 commenti

Progetto di un veicolo spaziale per la missione FOCAL

Il progetto del primo studente laureato della Fondazione Tau Zero è stato completato. Berkeley Davis, un luogotenente in seconda presso l’U.S. Air Force Institute of Technology di Dayton, Ohio, ha completato la sua tesi di dottorato avente per orgomento una sonda per lo spazio profondo in grado di portare a termine la missione FOCAL proposta dal dott. Claudio Maccone. Coloro che non hanno familiarità con la missione FOCAL, sappiano che si tratta di un  progetto per sfruttare l’effetto di lente gravitazionale del Sole, che inizia a circa 550 U.A. di distanza da esso e che secondo Maccone offrirà un forte ingrandimento per lo studio di soggetti come la CMB (radiazione cosmica di fondo nelle microonde). Per maggiori informazioni consultare gli archivi di Centauri Dreams. (Paul Gilster)

Origine del soggetto: Maccone, Deep Space Flight and Communications: Exploiting The Sun as a Gravitational Lens (Springer, 2009).

Analisi del veicolo e della missione Davis, Berkrley. R.(2012) Gravitational Lens: The Space Probe Design (Thesis) AFIT/GA/ENY/12-M06, Air Force Institute of Technology.

Per fornire una base di riferimento realistica di cosa sia possibile fare, allo studente è stato richiesto di contenere il suo progetto nell’ambito della tecnologia attualmente disponibile. La missione implica il trasporto di un radiotelescopio di 12 m di diametro a 550 Unità Astronomiche (UA) e proseguire oltre, per esaminare l’effetto di lente gravitazionale del nostro sole. La missione secondaria, che si svolge prima di raggiungere quel punto, è dedicata alla misura dei campi magnetici, delle particelle e delle polveri durante l’attraversamento del nostro sistema solare e la transizione attraverso il limite del sistema solare (the termination shock, the heliosheath, eliopausa) e nel vero spazio interstellare. In breve, si considera che questa missione possa essere compiuta con la tecnologia attualmente esistente a un costo compreso tra 3 e 5 miliardi di dollari (stima 2011), e che il veicolo spaziale impiegherebbe circa 34 anni per raggiungere il limite del nostro sistema solare, circa 110 anni per raggiungere il punto di missione primario a 550 UA, e continuerebbe successivamente per quasi 80 anni la raccolta dei dati fino a raggiungere circa 1000 UA, dove avrebbe probabilmente superato la previsione di due secoli di vita operativa.

Considerando questi obiettivi e limitazioni, lo studente ha progettato un veicolo a due stadi, che viene messo in orbita da un lanciatore “Delta IV-H/Star48/Star37”. Il primo stadio, che porta una schiera di pannelli solari per una potenza di 22 kW, monta quattro propulsori ionici tipo “NEXT” per portare il veicolo dall’orbita terrestre fino a Giove mediante una spinta praticamente costante in una traiettoria a spirale, per una durata di 17 anni. Una volta arrivato a Giove, lo stadio di spinta viene sganciato, e lo stadio principale completa la manovra di fionda gravitazionale intorno al pianeta gassoso. Anche lo stadio principale è dotato di quattro propulsori ionici “NEXT”alimentati da 20 generatori termici a radioisotopi (RTG) con una potenza di circa 4.4 kW, in questo momento della missione. Il veicolo accelera con continuità per altri 17 anni fino ad esaurimento del combustibile e a una distanza di circa 90 UA. In questo momento la sua velocità è di 6.7 UA/anno, che è quasi il doppio della velocità del Voyager (3.6 UA/anno). Per i successivi venti anni circa compie un volo inerziale sul confine tra il nostro sistema solare ed il vero spazio interstellare, raccogliendo dati per la missione secondaria. Infine dopo piu di 55 anni, raggiunge la distanza di 550 UA, il punto piu vicino nel quale l’effetto della lente gravitazionale idealmente inizia. A questo punto la sua velocità è diminuita a 6.2UA/anno. Occorrono altri 12 anni per raggiungere 625 UA, che rappresenta il punto realisticamente più vicino (non influenzato dai disturbi dovuti alla corona solare, nde) per osservare un segnale nel punto focale. Il veicolo continuerà ad allontanarsi dal Sole per i successivi 60 anni e sarà in grado di raccogliere dati (osservazioni del nostro sole come lente gravitazionale) fino a quando supererà la distanza di 1000 UA dal Sole, circa 180 anni dopo il lancio. Stime provvisorie sul numero dei cicli dei sistemi di controllo dell’assetto, dei calcolatori di bordo, ecc, indicano che questo veicolo possa effettivamente funzionare per due secoli. Nella tesi sono segnalate le seguenti raccomandazioni:

  • dato che allo stato attuale la produzione di energia per i veicoli spaziali è il fattore tecnologico maggiormente limitante, essa deve essere considerata di primaria importanza nei prossimi programmi di ricerca sulle missioni interstellari

  • per compiere questo tipo di missioni che impiegano la tecnologia RTG, deve essere completamente riattivata la produzione di Plutonio-238

  • la durata delle missioni è piu estesa dei test di durata a terra, perciò devono essere create nuove tecniche di collaudo per garantire che il veicolo sarà ancora in funzione al momento in cui avrà raggiunto la posizione per la sua missione interstellare.

Nota: La missione utilizza circa il 10% della produzione totale annua di Xeno, e questo Xeno non sarà riutilizzabile sulla Terra. Questo studio è solo un primo approccio al problema, e le sue conclusioni non devono essere considerate definitive. 

Informazioni aggiuntive

 

Stadio di spinta

  • 4 Propulsori ionici = 225 kg (615 W – 7.2 kW ciascuno)

  • Serbatoio dello Xeno = 309 kg

  • Carico dello Xeno = 2996 kg

  • Pannelli solari 900 kg, 22kW

  • Spinta dall’orbita bassa terrestre  fino a Giove, distacco presso Giove

 Stadio principale

  • 4 Propulsori ionici = 225 kg (615 W – 7.2 kW ciascuno)

  • Serbatoio dello Xeno = 217 kg

  • Carico delloXeno = 1888 kg

  • Energia RTG: 20 generatori termici da sorgente di calore da radioisotopi per uso generale. Ciscuno pesa 58 kg, potenza iniziale di 246 W ed emivita di 90 anni

  • 12 propulsori di assetto = 0,8 kg ciascuno

  • Serbatoi del propellente per il controllo di assetto = 12 kg

  • Propellente per il controllo di assetto = 151 kg

  • Carico utile (strumenti scientifici) 51kg, 40W

    • Radiotelescopio 12m (con la doppia funzione di antenna di comunicazione ad alto guadagno)

    • Magnetometri

    • Rivelatori di particelle

    • Rivelatori di polveri

    • I propulsori funzionano da Giove fino alla distanza di 90 UA dove si esauriscono. Volo inerziale da 90 UA in avanti, con trasmissione dati a 100 kBit/sec fino a 1000UA.

      traduzione di PIERFELICE GABRIELLI

      Titolo originale: “Interstellar (Precursor) Mission & Vehicle Design“, scritto da Marc Millis e pubblicato il 30 marzo 2012 da Centauri Dreams

21 luglio 2012 Posted by | Astrofisica, Astronautica, missione FOCAL, Scienze dello Spazio, Volo Interstellare | , , , , | 1 commento

Internet si espande nel Sistema Solare. E oltre?

Immaginate un Internet Siderale, i cui nodi siano costituiti da tutti i manufatti spaziali attualmente in funzione o comunque operativi, e da tutti quelli che verranno lanciati in futuro. Proprio tutti, purché abbiano a bordo un computer, un trasmettitore e un generatore funzionanti: i satelliti in orbita bassa, la ISS, i geostazionari dedicati alle telecomunicazioni e al telerilevamento, gli orbiter, i lander e i rover marziani, le sonde da esplorazione a lungo raggio e anche un buon numero delle infrastrutture, enti di ricerca, società, e università che fanno parte del sistema scientifico – industriale dedicato all’esplorazione dello Spazio. Ecco l’Internet Siderale, una colossale rete wireless e allo stesso tempo mobile, in costante espansione nel cosmo insieme all’Uomo e ai suoi robot. Questa lungimirante visione è frutto della mente di Vint Cerf (nell’immagine), Vicepresidente e Chief Internet Evangelist di Google, uno dei padri di Internet, che sta lavorando all’idea da una decina d’anni. Cerf si è reso conto che l’Internet Siderale non poteva ricorrere alla stessa architettura del primo Internet, ossia alla suite di protocolli nota come TCP/IP, ma aveva bisogno di un nuovo protocollo, basato sulla nozione di “rete a tolleranza di ritardo e di interruzione”, che è stato chiamato semplicemente Bundle Protocol.

Una nuova architettura di rete

Nella maggior parte del mondo, ormai, si può contare su infrastrutture elettriche e telefoniche abbastanza sofisticate e affidabili da consentire il libero accesso del pubblico non sempre alla navigazione in banda larga, ma almeno a servizi telematici di base come la posta elettronica e lo scambio di file tramite FTP. In questo ambiente relativamente protetto, che offre garanzie di connetività a buon livello, la suite di protocolli TCP/IP ha dato prova di funzionare in maniera soddisfacente. Ciò non avviene invece in ambienti estremi, come quello sottomarino, o in zone disastrate, contaminate, o teatro di operazioni belliche. E naturalmente nell’ambiente più estremo di tutti: lo Spazio.

Qualunque apparato o segnale si trovi ad attraversarlo, viene immediatamente esposto all’influenza di svariati elementi che possono pregiudicarne il funzionamento o, nel caso di una trasmissione dati, la qualità e la potenza. Mi riferisco agli effetti dell’attività solare, che sulla Terra vengono di norma filtrati dall’atmosfera o dalla magnetosfera, ossia radiazioni d’ogni lunghezza d’onda e fasci di particelle cariche emessi irregolarmente ad altissima velocità (il cosidetto “vento solare”). Fanno la loro parte anche il rumore della radiazione cosmica di fondo, cioè quanto rimane del calore originario presente alla nascita dell’universo 13,7 miliardi di anni fa, e l’esposizione a violente escursioni termiche, nonché il moto dei pianeti e degli stessi veicoli spaziali, che sono i nodi della nuova Rete. Ma l’elemento perturbante di maggior impatto è qualcosa di cui gli informatici raramente devono tener conto sulla Terra: il “ritardo – luce”, cioè il tempo necessario a un segnale per percorrere, alla velocità della luce, la distanza tra chi trasmette e chi riceve (Esempi: Terra – Luna = 1,28 secondi; Sole – Terra = 8,33 minuti; Sole – Saturno = 1 ora circa).

Ecco quindi prendere corpo l’idea di “rete a tolleranza di ritardo e di interruzione”, un Internet Siderale intermittente e discontinuo, capace di funzionare in qualsiasi ambiente. La parte terrestre della nuova rete è a buon punto e il Bundle Protocol gira già nei computer della ISS, e in quello della sonda EPOXI (ex Deep Impact) che ha appena effettuato un flyby della cometa Hartley 2, a 80 secondi – luce dalla Terra. Nell’anno in corso, Cerf e i suoi collaboratori contano di completare i test del Bundle Protocol per poi offrirlo a tutte le nazioni del mondo in modo che possano liberamente implementarlo nei loro veicoli spaziali, e l’Internet Siderale prenda vita.

Guardare oltre….

Alla nascita dell’Internet Siderale, l’attuale tecnologia sembra essere perfettamente in grado di dare supporto a un complesso sistema di telecomunicazioni esteso a tutto il Sistema Solare. Per guidare i rover della NASA su Marte oppure comunicare alla sonda Cassini di scattare fotografie di Saturno, gli scienziati si affidano oggi al Deep Space Network (DSN) dell’agenzia spaziale americana, la cui antenna è abbastanza potente da mantenere gli scienziati in contatto con Voyager 1 e 2, che si trovano a circa 17,5 miliardi di chilometri dalla Terra, ai confini del Sistema Solare. Ma è roba da poco se paragonata alla distanza di 4,37 anni-luce che ci separa dalle stelle più vicine, ossia il sistema triplo noto come Alpha Centauri. Comunicare a queste distanze con le nostre future sonde interstellari è un vero problema. Infatti le telecomunicazioni risultano indebolite e distorte dal rumore della radiazione cosmica di fondo, che può rendere incomprensibile fino alla metà delle informazioni scambiate tra la Terra e i nostri robot da esplorazione. Così anche se l’Umanità fosse capace di viaggiare tra le stelle, mantenere i contatti potrebbe essere impossibile.

Ma Claudio Maccone (nell’immagine), Direttore Tecnico del International Academy of Astronautics di Parigi e autore di un nuovo studio su questo tema, dice: “Se usiamo il Sole come una lente gravitazionale possiamo mantenere i contatti con le nostre sonde anche a distanze interstellari. Questa è la chiave per esplorare i dintorni del Sistema Solare nei secoli a venire. Anche civiltà aliene potrebbero avere scoperto questo metodo per comunicare a lunga distanza. Se cosi fosse, potremmo essere in grado di intercettare le loro comunicazioni”. Il nostro Sole potrebbe effettivamente rivelarsi il migliore dispositivo possibile per le telecomunicazioni, se la sua gravità potesse essere usata per creare un radiotelescopio gigante in grado di mandare e ricevere segnali enormemente amplificati che potrebbero permetterci perfino di comunicare con una civiltà aliena. (per maggiori informazioni si veda Missione Focal). Questa tecnologia potrebbe essere applicata a radiazioni di qualsiasi lunghezza d’onda, per esempio nello spettro visibile o in quello radio. Anzi, si potrebbe creare una rete ancora più potente posizionando delle sonde relais vicino ad altre stelle per formare ponti radio attraverso il grande vuoto interstellare.

Ponti radio “gravitazionali”

Per crearne uno si dovrebbe cominciare piazzando una sonda relais in corrispondenza del fuoco più vicino della lente gravitazionale del Sole, situato alla distanza di 550 Unità Astronomiche (UA) da esso. Quindi all’altro capo del ponte, continuando con l’esempio di Alpha Centauri, deve essere piazzata una seconda sonda relais per potenziare i segnali in entrata e uscita. Per la maggiore delle tre stelle di tale sistema, che ha massa di poco superiore a quella del Sole, il fuoco gravitazionale più vicino si trova a 749 UA da essa.

Con questi relais in posizione, la percentuale d’errore nelle trasmissioni tra i due capi del ponte crollerebbe da 1 su 2 , a 1 su 2 milioni, pari all’accuratezza raggiunta dal DSN nell’ambito del Sistema Solare. Sorprendentemente, la potenza di trasmissione richiesta è davvero minima, appena un decimo di milliwatt, come dire svariati ordini di grandezza in meno delle antenne del DSN. Maccone ha anche calcolato la posizione dei fuochi e la potenza di trasmissione per due altre stelle nelle vicinanze del Sole: la stella di Barnard, una piccola nana rossa, e Sirio, una gigante blu, che si trovano rispettivamente a una distanza di 5,6 e di 8,6 anni luce dalla Terra.

Tuttavia, la realizzazione di un sistema radio interstellare basato su lenti gravitazionali darebbe un gran da fare agli ingegneri. Tanto per cominciare, i ripetitori dovrebbero restare precisamente allineati uno rispetto all’altro e ai loro amplificatori stellari anche su distanze estreme, afferma Maccone. Ciò richiederebbe un sistema rivoluzionario di navigazione celeste e orientamento, una sorta di GPS galattico basato sulle pulsar. Ma anche se effettivamente questi ponti radio potrebbero aiutarci a tenere i contatti, il limite universale della velocità della luce (e quindi dell’informazione) scoperto da Einstein, implica che il dialogo avrebbe comunque tempi lunghissimi. Data la distanza, una conversazione con una colonia su un ipotetico mondo abitabile (tipo “Avatar”), nel sistema di Alpha Centauri, avrebbe un ciclo domanda – risposta di quasi nove anni. “Attualmente non c’è soluzione al problema del ritardo nelle telecomunicazioni” – dice Maccone – “Ma la buona notizia è che adesso abbiamo un modo affidabile per comunicare attraverso distanze interstellari.”

Fonti:

“Vint Cerf: Deep Space Internet” di Vittorio Solinas  (Wired.it, 12 giugno 2009)

Sun’s Gravity Could Be Tapped to Call E.T.” di Adam  Hadhazy (Space.com, 21 dicembre 2010)

“An Internet designed  for Space” di Paul  Gilster (Centauri Dreams, 23 febbraio 2011)

29 marzo 2011 Posted by | Astronautica, Ciberspazio, missione FOCAL, Scienze dello Spazio, Volo Interstellare | , , | 2 commenti

Missione FOCAL: viaggio ai fuochi gravitazionali del Sole e dei Pianeti

La prima dimostrazione sperimentale della Teoria della Relatività Generale fu eseguita da Arthur Eddington nel 1919, quando riuscì a misurare gli effetti del campo, o meglio del pozzo gravitazionale del Sole sulla luce delle stelle ad esso vicine. La massa del Sole, infatti, genera una distorsione del tessuto dello spaziotempo in grado di deflettere le onde elettromagnetiche provenienti da una “sorgente”astronomica di qualsiasi tipo (esopianeti, stelle, galassie, o altro), e farle convergere in un punto detto “fuoco”, dove l’informazione da esse veicolata risulta intensificata, amplificata, ingrandita. Per le evidenti analogie con le lenti ottiche, questo fenomeno è stato chiamato “lente gravitazionale”.

Numeri, esempi e un po’ di storia

L’asse focale è la linea immaginaria che unisce la sorgente, il centro del Sole, e il fuoco, in modo che la sorgente rimanga perfettamente occultata dal disco solare rispetto al fuoco stesso. Il fuoco del “sole nudo”, così chiamato perché la sua posizione è stata calcolata senza tener conto di nessun effetto di distorsione o attenuazione del segnale sorgente, si trova alla bella distanza di 550 Unità Astronomiche (UA), ben oltre i confini del Sistema Solare. Dato che il potere della lente gravitazionale del Sole (GLS) si applica alle onde elettromagnetìche provenienti da tutte le infinite sorgenti dell’Universo, si può immaginare una sfera focale del sole nudo, di raggio pari a 550 UA, composta da un numero infinito di fuochi.

Niente di costruito dall’Uomo è mai arrivato così lontano, nemmeno l’intramontabile Voyager 1, che ha da poco raggiunto le 110 UA. Ma varrebbe davvero la pena di andarci, perchè le prestazioni promesse dalla GLS sono assolutamente terrificanti: si prevede di ottenere un’amplificazione del segnale sorgente dell’ordine di dieci all’ottava potenza, e oltre! La Natura ci offre, a poco più di tre giorni-luce dalla Terra (a tanto equivale, infatti, la distanza di 550 UA) uno strumento d’indagine di ineguagliabile potenza. Anche se con l’attuale tecnologia non siamo in grado di dare il via a una missione al fuoco gravitazionale, è opinione comune tra gli scienziati del settore che tra una ventina d’anni tale missione potrebbe essere effettivamente messa in calendario e portata a termine entro la fine del secolo.

A parte lo stesso Einstein, che nel 1936 pubblicò un lavoro specifico sulle lenti gravitazionali, da allora nella comunità scientifica nessuno si occupò più del problema fino al 1964, quando Sidney Liebes, della Stanford  University, promulgò la teoria matematica della lente gravitazionale. Nel 1979 Von Eshleman, anch’egli della Stanford, per primo suggerì la possibilità di lanciare una missione diretta al fuoco della GLS. Nello stesso anno fu pubblicata dal CalTech-JPL la tesi di dottorato di David Sonnabend, intitolata “To the Solar Foci”, che però si occupava di argomenti relativi alle onde gravitazionali e ai neutrini, estranei agli obiettivi di questo articolo. Nel 1987, nel corso della Seconda Conferenza Internazionale di Bioastronomia, Frank Drake, uno dei pionieri del SETI, delineò il profilo della missione suggerita da Von Eshleman, che sarebbe stata più tardi denominata “missione FOCAL”. Tra i presenti c’era anche il fisico-matematico Claudio Maccone, all’epoca ricercatore presso l’Alenia Spazio e oggi Direttore Tecnico per l’Esplorazione Scientifica dello Spazio presso la IAA di Parigi. Nel 1992 Maccone organizzò, presso il Politecnico di Torino, la prima conferenza internazionale interamente dedicata a FOCAL, denominata “Space Missions and Astrodynamics I”. L’anno successivo, a nome di un vasto numero di colleghi europei e americani, propose ufficialmente la missione all’ESA, ricevendo il pubblico encomio del Direttore dei Programmi Scientifici dell’Agenzia, Roger Bonnet, ma nessun finanziamento. Da allora Maccone ha costantemente approfondito e allargato la ricerca sulla GLS, e arricchito il profilo della missione FOCAL. Il volume “Deep Space Flight and Communications: Exploiting the Sun as a Gravitational Lens” (Springer/Praxis, 2009), costituisce la sintesi del lavoro di questi ultimi vent’anni.

La missione FOCAL in tre tappe: 550 UA, 1000 UA, 17000 UA

Nella lente gravitazionale, la deflessione subita dalle onde elettromagnetiche non è uniforme, ma dipende dalla loro distanza dal Sole: quelle che passano radenti al disco solare vengono deflesse più intensamente di quelle che passano più lontano, ma andranno tutte a concentrarsi lungo l’asse, seppure a distanze diverse, creando infiniti nuovi fuochi, ognuno corrispondente a una frequenza d’onda via via più bassa. Alla sfera di fuochi del sole nudo, si aggiunge quindi un numero infinito di nuove sfere focali concentriche. In pratica, a partire da 550 UA in avanti, qualsiasi punto dello spazio è un fuoco gravitazionale e quindi la sonda FOCAL dovrà essere progettata ed equipaggiata considerando la sfera focale del sole nudo non come l’obiettivo, ma come la prima tappa di un viaggio di ricerca che potrebbe concludersi ben più lontano.

La missione FOCAL

Infatti, a complicare le cose ci si mette la Corona solare, la zona più calda e turbolenta dell’atmosfera del Sole, composta essenzialmente da plasma, le cui fluttuazioni creano sulla luce in arrivo dalla sorgente un effetto divergente che si oppone a quello convergente esercitato dalla GLS. Il risultato è che tutto il sistema delle sfere focali concentriche slitta allontanandosi dal Sole: così a 650 UA troviamo il fuoco per la frequenza di 500 GHz; a 763 UA il fuoco per i 160 GHz del CMB, la cosidetta “radiazione cosmica di fondo”; e infine a 1000 UA il fuoco per i 60 GHz. Va precisato, comunque, che non esiste ancora un modello matematico pienamente soddisfacente della Corona solare, quindi con l’aumentare delle conoscenze i dati potrebbero cambiare.

Nell’ultimo studio di Maccone, presentato a Praga pochi mesi orsono, nel corso dell’annuale Congresso Internazionale di Astronautica, si prospetta l’estensione della missione fino a 17000 UA. Questa dilatazione delle distanze è dovuta al fatto che Maccone, accogliendo un suggerimento proveniente dai lettori di Centauri Dreams (vedi blogroll), ha allargato l’analisi anche alle lenti gravitazionali dei pianeti del Sistema Solare. I suoi calcoli indicano che la sfera focale di Giove, situata a 6100 UA, sarà la prima ad essere raggiunta dalla nostra sonda nel prolungarsi del suo viaggio di allontanamento dal Sole. A 13525 UA incontriamo la sfera focale di Nettuno, prima di quella di Saturno (14425 UA), poi quella della Terra (15375 UA), prima di quella di Urano e Venere, fino a 17000 UA.

Le lenti planetarie sono ovviamente molto meno potenti della GLS, ma presentano alcune caratteristiche che le rendono degne di indagini più approfondite. Prima di tutto muoversi tra 1000 e 17000 UA significa operare ben addentro la cosidetta Nube di Oort, vastissima zona inesplorata, da dove si dice provengano le cosidette comete “esterne”, di lungo periodo. Una prima esplorazione della Nube, anche se parziale e sommaria, avrebbe un grande valore scientifico. Secondo, le lenti planetarie non risentono di effetti distorsivi simili a quelli della Corona solare. Infine, se il Sole può considerarsi immobile nel sistema delle sfere focali, i pianeti invece si muovono lungo le loro orbite. E con essi si muovono anche le lenti loro associate dando vita, agli occhi dell’osservatore, a un vero e proprio carosello di immagini fortemente ingrandite di oggetti astronomici d’ogni genere.

Ma lasciamo che sia lo stesso Maccone a concludere: ”ripensando al lavoro svolto finora sulle possibilità di un vero volo interstellare, semba lecito dire che gli studiosi delle missioni dirette ad Alpha Centauri, nello sforzo di coprire in un sol balzo quei 4,37 anni-luce, saltano a pie’ pari tutto quello che si trova a soli tre mesi-luce, come la sfera focale della Terra.”

Fonti: Centauri Dreams, “Deep Space Flight and Communications: Exploiting the Sun as a Gravitational Lens” (Springer/Praxis, 2009), Wikipedia

20 gennaio 2011 Posted by | Astrofisica, Astronautica, missione FOCAL, Scienze dello Spazio, Volo Interstellare | , , | 8 commenti

   

%d blogger hanno fatto clic su Mi Piace per questo: