Il Tredicesimo Cavaliere

Scienze dello Spazio e altre storie

Ci siamo quasi…

locandina tredicesimo cavaliere blog facebookpage web2.0

 

A breve sarà on-line il nuovo blog: “IL TREDICESIMO CAVALIERE 2.0“, che si propone di stupire i fedelissimi e di coinvolgere sempre più appassionati ed esperti di scienze delle spazio e fantascienza.    

Il Team di autori e  in particolar modo il responsabile supremo, sua eccellenza Roberto Flaibani, stanno lavorando a ritmi serratissimi  con l’intento di creare un ambiente accogliente, che riesca a coinvolgere e a nutrire la sete di conoscenza verso ciò che ci circonda. 

Completamente rinnovato in grafica e funzionalità, ma sulla consolidata  linea guida del suo predecessore, Il Tredicesimo Cavaliere 2.0 vi invita a lasciare commenti, idee e suggerimenti al fine di prepararsi al meglio al suo lancio.

 

31 maggio 2016 Posted by | 4th Symposium IAA - SETI, Astrofisica, Astronautica, by G. de Turris, Carnevale della Chimica, Carnevale della Fisica, Carnevale della Matematica, Ciberspazio, Cinema e TV, Difesa Planetaria, Epistemologia, Fantascienza, Giochi, Letteratura e Fumetti, missione FOCAL, News, NON Carnevale della Fisica, Planetologia, Radioastronomia, Referendum Prima Direttiva, Scienze dello Spazio, Senza categoria, SETI, Volo Interstellare | Lascia un commento

Lenti gravitazionali nel Sistema Solare

GL Pianeti

Immagine: la fascia completa delle sfere focali comprese fra 550 e 17.000 UA dal Sole, creata dall’effetto di lente gravitazionale del Sole e di ciascun  pianeta, mostrata in scala. La scoperta di questa fascia di sfere focali è il principale risultato esposto in questo lavoro, insieme al calcolo dei relativi guadagni di antenna. Fonte: C. Maccone.

La prima dimostrazione sperimentale della Teoria della Relatività Generale fu eseguita da Arthur Eddington nel 1919, quando riuscì a misurare gli effetti del campo o meglio del pozzo gravitazionale del Sole sulla luce delle stelle ad esso vicine. La massa del Sole, infatti, genera una distorsione del tessuto dello spaziotempo in grado di deflettere le onde elettromagnetiche provenienti da una “sorgente”astronomica di qualsiasi tipo (pianeti extra-solari, stelle, galassie, o altro), e farle convergere in un punto detto “fuoco”, dove l’informazione da esse veicolata risulta intensificata, amplificata, ingrandita. Per le evidenti analogie con le lenti ottiche, questo fenomeno è stato chiamato “lente gravitazionale”. Il fuoco del “sole nudo”, così chiamato perché la sua posizione è stata calcolata senza tener conto di nessun effetto di distorsione o attenuazione del segnale sorgente, si trova ben addentro alla Nube di Oort alla bella distanza di 550 <UA>.

Dato che abbiamo parlato del fuoco gravitazionale del Sole, è interessante riflettere sulla storia di questo studio. Il pensiero di Albert Einstein sulle lenti gravitazionali in astronomia fu affrontato esplicitamente in un documento del 1936, ma per le formule matematiche alla base del fenomeno su vasta scala si dovette aspettare fino al 1964, quando Sydney Liebes dell’Università di Stanford lavorò con la lente prodotta da una galassia interposta fra la Terra e una quasar lontana. In questo modo nel 1978 l’astronomo britannico Dennis Walsh ottenne la prima “immagine” di una quasar, seguita l’anno successivo dallo studio di Von Eshleman sulla lente del Sole, comprendente l’idea di inviare un telescopio al fuoco del Sole nudo.

Riflettendo su come utilizzare la lunghezza d’onda di 21 cm Eshleman pensò al SETI, il cui concetto fu poi esposto da Frank Drake nel 1987. Se si ha a portata di mano una buona biblioteca accademica, la sua raccolta del Journal of the British Interplanetary Society del 1994 dovrebbe includere i risultati della Conferenza su Missioni Spaziali e Astrodinamica che Claudio Maccone organizzò due anni dopo. Si pensò quindi al telescopio spaziale FOCAL nell’ambito della missione SETISAIL, anche se il SETI sarebbe stato solo uno dei tanti aspetti delle sue indagini scientifiche.(n.d.e.)

FOCAL oltre le stelle

Per cercare un modo di sfruttare la lente gravitazionale del Sole dobbiamo tenere conto della corona solare, un problema che venne presto affrontato sia da Eshleman (Stanford) sia da Slava Turyshev (JPL). Per evitare le distorsioni della corona bisognerebbe inviare un telescopio non a 550 UA di distanza ma ben più lontano, approfittando del fatto che non abbiamo a che fare con un punto focale ma con una linea focale. A tale proposito riportiamo il pensiero di Claudio Maccone:

“una conseguenza semplice ma molto importante della discussione di cui sopra è che anche tutti i punti su una retta oltre questa distanza focale minima sono dei fuochi, perché i raggi luminosi passanti accanto al Sole a una distanza superiore a quella minima hanno un angolo di deflessione più piccolo e pertanto si uniscono a una distanza ancora maggiore dal Sole.”

Abbiamo quindi la possibilità di spostarci oltre le 550 UA, anzi non abbiamo scelta. La corona solare crea quello che Maccone definisce un “effetto di lente divergente”, che si oppone all’effetto convergente associato a una lente gravitazionale. Parafrasando il documento si può dire che la distanza minima che la sonda FOCAL deve raggiungere è maggiore per le frequenze più basse (delle onde elettromagnetiche che attraversano la corona) e minore per le frequenze più alte. Quindi, a 500 GHz il fuoco si trova a circa 650 UA. A 160 GHz, si trova a 763 UA.

Ma nel caso volessimo realizzare ponti radio interstellari, dovremmo forse limitarci all’utilizzo della lente gravitazionale del Sole e di quelle delle stelle vicine, in realtà anche i pianeti possono essere usati a questo scopo. Nel suo studio del 2011 riguardante quest’idea, pubblicato su Acta Astronautica, Maccone produce le equazioni necessarie, notando che il rapporto fra il quadrato del raggio di un pianeta e la sua massa ci permette di calcolare la distanza che una sonda deve raggiungere per poter sfruttare la lente del pianeta stesso. Di conseguenza abbiamo definito il concetto di “sfera focale” di un pianeta.

La lente si sposta nella Nube di Oort .

L’illustrazione a inizio articolo contiene delle sorprese. Ci aspetteremmo Giove in cima all’elenco di lenti planetarie e, in effetti, la sua sfera focale è la prima fuori dal Sole a 6100 UA. È un numero utile da ricordare, perché potremmo scoprire che gli effetti della corona solare sono insormontabili per la produzione delle immagini necessarie. In tal caso, dovremmo usare una posizione a metà strada verso la Nube di Oort interna.

Dato che ha un rapporto elevato fra quadrato del raggio e massa, dopo Giove troviamo Nettuno a 13.525 UA. La sfera focale di Saturno si trova a 14.425 UA, dopodiché troviamo quella della Terra a 15.375 UA. Il nostro pianeta è un miglior candidato di Urano come lente perché è il corpo con la maggiore densità (rapporto fra massa e volume) nel Sistema Solare. Maccone lo sottolinea particolarmente perché conosciamo la superficie e l’atmosfera della Terra meglio di quelle di qualsiasi altro pianeta. Una missione FOCAL utilizzante la Terra come lente partirebbe in netto vantaggio per aggiustare l’immagine distorta di un oggetto distante.

Come potremmo sfruttare queste sfere focali planetarie, che nel caso di Venere si estendono fino a 17.000 UA? Partendo dal Sistema Solare una sonda veloce potrebbe esaminarle una per una, iniziando le osservazioni al calare degli effetti della corona solare. Sottolineando che una sonda diretta ad Alpha Centauri attraverserebbe tutte queste sfere focali, Maccone riflette sugli eventuali risultati:

“Innanzitutto, anche se il Sole è immobile nel quadro di riferimento eliocentrico del Sistema Solare, i pianeti invece si muovono. Ciò significa che attraversano una certa area del cielo visto dalla sonda, la quale potrebbe trarre vantaggio da questa specie di lente di ingrandimento semovente. Quanti sono i pianeti extrasolari che ricadrebbero all’interno di questa lente? Ovviamente al momento non lo sappiamo, ma gli oltre 400 esopianeti scoperti finora [il documento risale al 2011] promettono bene per il rilevamento di molti altri esopianeti da parte di una sonda adeguatamente equipaggiata, che percorra la distanza compresa fra 550 e 17.000 UA e che usi le lenti gravitazionali dei pianeti.”

Tali scoperte sarebbero del tutto serendipiche, a dir poco, dato che la nostra missione per Alpha Centauri in uscita dal Sistema Solare vedrebbe solo ciò che si troverebbe in linea con il pianeta studiato. Il fatto di avere Giove a 6.100 UA e la Terra a 15.375 AU ci offre dei bersagli utili per sperimentare le tecnologie che ci serviranno per ricavare delle immagini dall’incontro con una sfera focale. Uno dei grossi punti interrogativi della missione Breakthrough Starshot è la costruzione e l’utilizzo dei laser in fase. Ma se verranno realizzati e potremo raggiungere velocità pari a una significativa frazione della velocità della luce, missioni dedicate all’esplorazione delle lenti planetarie sarebbero fattibili.

Chiaramente è il Sole la nostra prima opzione come lente gravitazionale, non solo per la relativa prossimità del suo punto focale minimo (550 UA), ma perché il guadagno effettivo della sua lente è più alto di quello della lente di Giove e molto più elevato di quello della lente della Terra. Maccone calcola i valori numerici del guadagno dalla riga dell’idrogeno fino al picco CMB a 160 GHz, valutando ognuno di essi per la lente gravitazionale del Sole oltre che per le sfere focali dei vari pianeti. Se vogliamo lavorare con il potenziale delle lenti planetarie, abbiamo bisogno di notevoli progressi nelle tecnologie delle antenne e dell’imaging, al fine di leggere le deboli firme inviate dai pianeti.

Il documento è: Maccone,  New Belt Beyond Kuiper’s: A Belt of Focal Spheres Between 550 and 17,000 AU for SETI and Science, Acta Astronautica Vol. 69, Nn. 11-12 (Dicembre 2011), pp. 939-948 (estratto).

traduzione di FAUSTO MESCOLINI

editing ROBERTO FLAIBANI

23 maggio 2016 Posted by | Astrofisica, Astronautica, News, Planetologia, Radioastronomia, Scienze dello Spazio, Senza categoria, SETI | , | Lascia un commento

ALLA VIA COSI’, YURI !

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

Yuri Milner e Stephen Hawking presentano Breakthrough Starshot

L’imprenditore e filantropo russo Yuri Milner nemmeno un anno fa aveva messo in subbuglio la comunità astronomica mondiale offrendo tramite la società Breakthrough Listen (consociata della capogruppo Breakthrough Initiatives), un finanziamento di 100 milioni di dollari perché venisse risolto uno degli interrogativi più profondi e complessi che l’uomo si è posto da quando ha cominciato ad esplorare lo Spazio: “Siamo soli nell’Universo? Se non lo siamo, dove sono gli Altri?”.

Ora, attraverso un’altra consociata, la Breakthrough Starshot, e con un secondo finanziamento di 100 milioni di dollari, Milner si propone di realizzare uno studio completo per l’attuazione di un volo interstellare fino ad Alfa Centauri della durata di 20 anni, che costerà tra i cinque e i dieci miliardi di dollari. L’iniziativa è stata presentata il 12 aprile a New York ed è stata seguita da un animato brainstorming per addetti ai lavori che si è appena concluso a Palo Alto, in California.

 

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

Una vela fotonica laser-assistita in assetto di volo

 

Da brillante stratega qual’è, nella nuova Breakthrough Starshot Milner ha voluto personaggi di prim’ordine: nel consiglio di amministrazione ha confermato Stephen Hawking e cooptato Mark Zuckerberg, fondatore e presidente di Facebook, mentre ha dato l’incarico di direttore a Pete Worden, che per questo ha rinunciato a un analogo incarico presso l’Ames Research Center della NASA. Milner si avvale inoltre di un gruppo di consiglieri di chiara fama, tra i quali da Harvard l’astronomo Avi Loeb, dall’Inghilterra l’Astronomo Reale Martin Rees, da Berkeley il Nobel Saul Perlmutter, da Princeton Freeman Dyson, matematico ed esponente di primo piano del SETI, e Ann Druyan, vedova di Carl Sagan e produttrice della serie televisiva “Cosmos, a Spacetime Odissey”.

 

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

La batteria laser in procinto di fare fuoco

 

Prima di passare a un primo approfondimento, facciamo un po’ di storia. Si era nei giorni a cavallo tra settembre e ottobre 2011 e a Orlando (Florida) si svolgeva il congresso di formazione del 100YSS, il primo movimento di opinione che si proponeva di realizzare il volo interstellare. Era composto di professori e studenti universitari e da una moltitudine colorata di space-enthusiast mobilitati da dozzine di gruppi e associazioni, in un’atmosfera degna di Woodstock. In realtà la convention era frutto dell’intuizione di alcuni pezzi grossi della NASA e sopratutto della DARPA, l’agenzia per la tecnologia avanzata del Pentagono, che aveva fornito all’operazione copertura finanziaria e mediatica, con una formula tutta americana impensabile nel nostro paese. Non è dunque Milner, bensì sono i militari del Pentagono i primi ad avere intuito la potenzialità di mercato e la capacità di innovazione scientifica e tecnologica che un rinnovato interesse allo spazio in questi termini potrebbe destare. Le iniziative di Milner, e degli altri Paperoni che speriamo ne seguano l’esempio, nonostante le differenze rappresentano il logico sviluppo e coronamento della strategia targata DARPA.

 

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

 

Ricordiamo ai lettori che un’informazione sommaria sui particolari tecnici e organizzativi dell’impresa è già stata trasmessa dai media. Ci limiteremo quindi a elencare i punti caldi, fornendo però un’accurata lista di link per chi vuole approfondire.

La tecnologia di base

Le Nanotecnologie e il loro turbinoso sviluppo, sono alla base della proposta della Breakthrough Starshot. Infatti Alpha Centauri, lontana 4,3 anni luce, non sarà raggiunta da una singola astronave, ma da uno sciame di centinaia di nanosonde spaziali di cui esistono già modelli sperimentali chiamati Sprite, ma qui conosciuti come “Starchip”. Trattandosi di una missione di fly-by senza equipaggio, non sono possibili manovre di rientro: dopo aver raggiunto Alpha Centauri, le nanosonde superstiti si perderanno nello spazio.

 

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

Nanotecnologie in azione: un prototipo dello Sprite

 

La navigazione

La tecnica della vela fotonica laser-assistita. Questa tecnica è stata allo studio per molti anni sopratutto ad opera del fisico americano  Robert Forward, ma è stata sempre giudicata irrealizzabile fino alla nascita delle nanotecnologie.

Per muoversi, ogni nanosonda sarà abbinata a una vela fotonica di forma quadrata e di 4 metri per lato, costruita con materiali di nuova concezione  estremamente leggeri e robusti, e, una volta raggiunta l’orbita terrestre verrà accelerata da un impulso laser lanciato dal suolo in direzione di Alfa Centauri fino alla velocità di 60.000 km/sec,  pari al 20% della velocità della luce.

La propulsione

La batteria di laser che farà da propulsore sarà riutilizzabile per varie missioni. Nella sua configurazione principale, quella Starshot, la batteria dovrà essere in grado di emettere almeno una volta al giorno un impulso della potenza di 100 gigawatt e della durata di 2 minuti, e poi ricaricare. Ma si potrebbe usare per spedire sciami di starchip ovunque nel Sistema Solare e verso le stelle più vicine con compiti diversificati. Potrebbe essere utilizzata come arma di Difesa Planetaria , ma purtroppo anche come super-arma in conflitti sulla Terra.

 

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

La missione FOCAL

 

Le telecomunicazioni a lungo raggio

Mantenere telecomunicazioni efficienti tra le nanosonde e la base a terra, probabilmente il  Deep Space Network (DSN) della NASA, è indispensabile per il successo della missione. Ma Claudio Maccone, Presidente del Comitato Permanente SETI in seno all’ International Academy of Astronautics di Parigi e autore di profondi studi su questo tema, dice:

Se usiamo il Sole come una lente gravitazionale possiamo mantenere i contatti con le nostre sonde anche a distanze interstellari. Questa è la chiave per esplorare i dintorni del Sistema Solare nei secoli a venire. Anche civiltà aliene potrebbero avere scoperto questo metodo per comunicare a lunga distanza. Se cosi fosse, potremmo entrare a far parte di un vero e proprio Internet interstellare.

Il nostro Sole potrebbe effettivamente rivelarsi il migliore dispositivo possibile per le telecomunicazioni, se la sua gravità potesse essere usata per creare una sorta di radiotelescopio gigante in grado di mandare e ricevere segnali enormemente amplificati. L’astronomo Slava Turyshev del Caltech ha parlato di un “guadagno d’antenna” dell’ordine di 1011 per radiazioni nella gamma ottica. Questa enorme “magnificazione” potrebbe essere sfruttata con radiazioni di qualsiasi lunghezza d’onda, per esempio nella gamma radio. Anzi, si potrebbe creare una rete ancora più potente posizionando delle sonde relais vicino ad altre stelle per formare ponti radio attraverso il grande vuoto interstellare.

Ponti radio “gravitazionali”

Per crearne uno si dovrebbe cominciare piazzando una sonda relais in corrispondenza del fuoco più vicino della lente gravitazionale del Sole, situato alla distanza di 550 Unità Astronomiche (UA) da esso. Quindi all’altro capo del ponte, continuando con l’esempio di Alpha Centauri, deve essere piazzata una seconda sonda relais per potenziare i segnali in entrata e uscita.
Con questi relais in posizione, la percentuale d’errore nelle trasmissioni tra i due capi del ponte crollerebbe da 1 su 2 , a 1 su 2 milioni, pari all’accuratezza raggiunta dal DSN della NASA nell’ambito del Sistema Solare. Sorprendentemente, la potenza di trasmissione richiesta è davvero minima, appena un decimo di milliwatt, come dire svariati ordini di grandezza in meno delle antenne del DSN.
Tuttavia la realizzazione di un sistema radio interstellare basato su lenti gravitazionali darebbe un gran da fare agli ingegneri. Tanto per cominciare, i ripetitori dovrebbero restare precisamente allineati uno rispetto all’altro e ai loro amplificatori stellari anche su distanze estreme, afferma Maccone. Ciò richiederebbe un sistema rivoluzionario di navigazione celeste e orientamento, una sorta di GPS galattico basato sulle pulsar. Ma anche se effettivamente questi ponti radio potrebbero consentirci di tenere i contatti, il limite universale della velocità della luce (e quindi dell’informazione) scoperto da Einstein, implica che il dialogo avrebbe comunque tempi lunghissimi. Data la distanza, una conversazione con una colonia su un ipotetico mondo abitabile (tipo “Avatar”), nel sistema di Alpha Centauri, avrebbe un ciclo domanda–risposta di quasi nove anni.

Attualmente non c’è soluzione al problema del ritardo nelle telecomunicazioni- dice Maccone -Ma la buona notizia è che adesso abbiamo un modo affidabile per comunicare attraverso distanze interstellari.

 

 

Alpha Centauri nanotecnologie vela fotonica laser-assistita batteria laser Breakthrough Starshot 100YSS Sprite Starchip Yuri Milner Claudio Maccone Internet interstellare ponti radio gravitazionali lente gravitazionale

Il Sole a confronto col sistema di Alpha Centauri

 

Concludiamo qui il primo articolo dedicato a Breakthrough Starshot sapendo già che torneremo spesso ad occuparcene.

ROBERTO FLAIBANI

27 aprile 2016 Posted by | Astrofisica, Astronautica, Difesa Planetaria, missione FOCAL, News, Scienze dello Spazio, SETI, Volo Interstellare | , , , , , , , , , , , , | 2 commenti

SETI: sapere dove guardare

KIC8462852 ATA Gregory Dominik Jim Benford

Immagine: l’Allen Telescope Array, usato di recente per un tentativo SETI su KIC8462852.Credit:ATA.

Qual ‘è il posto migliore per andare a cercare in cielo un segnale SETI? Qui affronteremo  questa tematica SETI con particolare riferimento ad un nuovo articolo di René Heller e Ralph E. Pudritz, che sarà protagonista di un nostro post successivo, ma prima vorrei contestualizzare l’argomento. Con il tentativo SETI sulla stella KCI 8462852 abbiamo svolto una campagna di osservazione mirata utilizzando l’Allen Telescope Array (ATA) per vedere se i ricercatori potessero trovare qualche prova di attività insolita associata con quella stella. Come abbiamo visto dal recente lavoro di Jim e Dominic Benford (vedi Power Beaming Parameters & SETI re KIC 8462852), nella breve finestra di osservazione non è stata trovata alcuna evidenza di impulsi di microonde, nonostante la nostra attrezzatura sarebbe stata in grado di rilevarne diverse tipologie.

 L’anomala curva di luce nei dati di Kepler ha fatto di KIC 8462852 un target di alto profilo. Ciò che la ricerca ATA andava cercando era la radiazione ‘di dispersione’, collegata alle attività di una civiltà tecnologica ma non intesa deliberatamente alla comunicazione con altri. Il fatto che non abbiamo trovato nulla non dovrebbe farci arrivare a conclusioni affrettate. Se volessimo indagare a fondo KIC 8462852 sarebbe necessario uno studio più sistematico e su altre frequenze, e dovremmo avere le risorse per farlo a lungo termine.

E per quanto riguarda la questione delle radiazioni disperse? È interessante che si siano registrati segnali una tantum (il segnale Wow! è uno di questi) che potrebbero essere verosimilmente il risultato di un raggio che ci è passato accanto partendo da un sistema remoto. O, almeno, coerente con questo – ci sono i segnali pulsanti e intermittenti che sono stati rilevati, ad esempio, in una ricognizione del centro della Via Lattea svolta nel 1997 (citata più avanti). Abbiamo anche fonti come GCRT J1745-3009, una sorgente radio transitoria a forti impulsi che non corrisponde alle emissioni di stelle a brillamento, pulsar binarie o altro.

Una civiltà che comunica

Il progetto SETI è cominciato in modo sperimentale nel 1960 con il lavoro di Frank Drake a Green Bank, che monitorò le stelle vicine Tau Ceti ed Epsilon Eridani. L’intenzione era di andare alla ricerca di un segnale diretto, un ‘ciao’ proveniente da un altro sistema stellare, e per un breve, indimenticabile momento, Drake pensò di averne trovato uno (il segnale, ora sappiamo, era locale). Data la natura di un tale impulso diretto, questo sarebbe teoricamente un segnale molto più facile da individuare, poiché rimarrebbe fisso su di noi e sarebbe a livelli di potenza tali che, a differenza delle nostre trasmissioni radiofoniche e televisive, sarebbe in grado di sopravvivere al lungo viaggio interstellare.

Da allora la maggior parte delle campagne di ricerca SETI – ce ne sono state più di 100! – ha  guardato a sistemi vicini o in alcuni casi ad ammassi stellari. Tra il 1995 e il 2004 il Progetto Phoenix del SETI Institute ha lavorato in diversi siti e, secondo Heller e Pudritz (entrambi della McMaster University, Ontario) ha monitorato più di 800 stelle distanti fino a 240 anni luce. Abbiamo fatto ricerche mirate del centro della galassia, osservato con attenzione specifiche stelle come Gl 581 e, nel 2015, abbiamo cercato emissioni laser da più di mille oggetti di interesse di Kepler. E non dimentichiamo il progetto SETI@Home, che attinge ai dati di Arecibo.

Ancora una volta non abbiamo trovato segnali diretti o radiazioni disperse, a meno che alcuni dei segnali di cui abbiamo discusso sopra non siano esempi dell’uno o dell’altro – il cosiddetto segnale di Benford – ci passerebbe accanto come un segnale transitorio che non avremmo potuto identificare senza ulteriori osservazioni.

In termini puramente numerici, ci si aspetterebbe che i segnali di dispersione siano i più abbondanti, in quanto sarebbero generati da molte civiltà tecnologiche e non solo da quelle intente a comunicare con noi. In ogni caso, dove puntare lo sguardo appare chiaro, ed è più che logico rivolgersi verso le regioni del cielo con le più alte densità stellari. Se ETI è là fuori, ci si aspetterebbe di rilevare più attività di segnali laddove ci sono più mondi potenzialmente abitabili.

 

Green-Bank-WV-NRAO

Immagine: il più grande radiotelescopio al mondo completamente movimentabile, a Green Bank, Virginia Occidentale. Frank Drake ha fatto partire il SETI sulle osservazioni da Green Bank nel 1960. Credit: NRAO

Verso il centro della Galassia

Di qui la strategia di ricerca che guarda al centro della galassia prospettata da Gregory, Dominic e Jim Benford in un precedente scritto del 2010, Searching for Cost Optimized Interstellar Beacons, che prevede una ricerca nel piano del disco a spirale. Questo perché il 90% delle stelle della galassia si trova entro il 9% del cielo, nel piano e nel centro della galassia. Dall’analisi:

Qualsiasi forma di vita possa vivere in una zona più centrale rispetto alla nostra deve conoscere la simmetria base della spirale. Questo suggerisce che il corridoio naturale di comunicazione sia lungo il raggio della spirale a partire dal centro della galassia o verso di esso, una direzione semplice nota a tutti. (Seguire un raggio è meglio che puntare lungo un braccio a spirale, poiché il braccio curva allontanandosi dal qualsiasi possibilità di visione rettilinea. D’altro canto, lungo i bracci a spirale vicini a noi le stelle hanno approssimativamente l’età della nostra). Questo percorso massimizza il numero di stelle visibili nel raggio d’azione di un telescopio, soprattutto se si punta al cuore della galassia. Così, un faro posto vicino al centro dovrebbe almeno trasmettere verso l’esterno in entrambe le direzioni, mentre le civiltà più periferiche possono risparmiare la metà dei loro costi non trasmettendo verso l’esterno, dove vi sono molte meno probabilità della presenza di società avanzate.

Ma non è ancora tutto, anzi questo è solo l’inizio. Nel 2004 Robert A. Rohde & Richard A. Muller (UC Berkeley) hanno suggerito che la vita marina sulla Terra seguirebbe un ciclo di 62 milioni di anni, un’idea successivamente sviluppata dagli scienziati secondo la quale il movimento del nostro Sole in verticale al di sopra e al di sotto del piano galattico (un’oscillazione di 62 milioni di anni) farebbe sì che il bow shock (onda d’urto) della galassia produrrebbe un flusso supplementare di raggi cosmici quando il Sole raggiunge la sua posizione più estrema a nord del piano galattico. Questo maggiore flusso potrebbe danneggiare la biosfera, e farebbe presumibilmente altrettanto per qualsiasi mondo abitato.

Potremmo, dunque, avere un piano vicino al centro del disco galattico, forse 500 anni luce in profondità, all’interno del quale ci sono maggiori probabilità di trovare vita intelligente. È interessante notare che le fonti transitorie di maggiore potenza riportate da Carl Sagan e Paul Horowitz in un articolo del 1993 si trovano vicine al piano galattico, e l’idea di una oscillazione verticale di circa 500 anni luce entro la quale la vita intelligente è più probabile ci dà un altro modo di concentrare la nostra ricerca su obiettivi possibili.

 

KIC8462852 ATA Gregory Domink Jim Benford

Immagine: La Via Lattea, stelle e polveri, con le regioni più probabili del cielo in cui cercare segnali SETI. Credit e Copyright: Serge Brunier.

Titolo originale – SETI: Knowing Where to Look  – di Paul Gilster, pubblicato su Centauri Dreams il 8/3/16.

Fonti:

  • Benford G., J., D.: Searching for Cost Optimized Interstellar Beacons Astrobiology 10 (2010), 491-498 (abstract / preprint).

  • L’articolo del 1997 a cui si accenna sopra a proposito  dei segnali transitori è di Sullivan et al.: A Galactic Center Search For Extraterrestrial Intelligent Signals –  Astronomical and Biochemical Origins and the Search for Life in the Universe, IAU Colloquium 161, Publisher: Bologna, Italy, p. 65

Traduzione di DONATELLA LEVI

Editing di ROBERTO FLAIBANI 

24 marzo 2016 Posted by | Astrofisica, Astronautica, Carnevale della Fisica, Planetologia, Radioastronomia, Scienze dello Spazio, SETI | , , , | Lascia un commento

eso10 – I colori di un mondo che vive

Questo articolo è stato pubblicato da Centauri Dreams il 5 ottobre 2012. Tre anni non son pochi in un settore in tumultuoso sviluppo come quello degli esopianeti, e abbiamo dovuto riscrivere completamente il primo capoverso per evitare che l’articolo risultasse obsoleto. In un successivo post, che apparirà tra breve, incontreremo di nuovo i protagonisti di ieri e potremo apprezzare gli sviluppi del loro lavoro. (RF)

32549Gliese 581d sembrava sempre più essere considerato un pianeta della zona abitabile, come Siddharth Hegde  (studente per il dottorato in Astronomia all’Istituto Max Planck) e Lisa Kaltenegger (Harvard-Smithsonian Center for Astrophysics e direttore del Carl Sagan Institute) avevano spiegato in un nuovo saggio. Essi stavano concentrando la loro attenzione su come caratterizzare un pianeta extrasolare roccioso e puntavano su HD 85512b e Gliese 667Cc nonché su Gl581d come esempi, ma ipotizzavano anche che avremmo rilevato sempre più mondi nella zona abitabile man mano che il telescopio spaziale Kepler continuava il suo lavoro. Ma Kepler, ancor oggi il più famoso cercatore di esopianeti, per un guasto a un giroscopio avvenuto nel 2013, si trova ora impossibilitato a continuare la sua missione come era stata originariamente concepita.

Nella foto: Siddharth Hegde

In assenza di missioni quali Terrestrial Planet Finder della NASA o Darwin dell’ESA, che ci permetterebbero di analizzare l’atmosfera di un esopianeta con i biomarcatori, cos’altro possiamo fare per trovare i luoghi dove esiste la vita? Hegde e Kaltenegger concentrano la loro attenzione sul colore di un pianeta per trovare la risposta. Più precisamente sono interessati a ciò che è conosciuto come diagramma colore-colore, che sfrutta il fatto che un oggetto può essere osservato a diverse lunghezze d’onda, con una magnitudine diversa che si evidenzia in ciascuna banda osservata. ‘Colore’, in questo senso, si riferisce alla differenza di luminosità tra le diverse bande, facilmente tracciata su un diagramma colore-colore.

Lisa KlateneggerAnalizzare un esopianeta nella lunghezza d’onda del visibile in un diagramma colore-colore può rivelare qualche proprietà fisica di base del pianeta, supponendo che la copertura di nuvole non crei problemi. Il nuovo documento pone l’attenzione sui tipi di ambiente della Terra che possono dare supporto a forme estreme di vita e considera come potremmo identificare ambienti equivalenti su un esopianeta. Piccoli cambiamenti di temperatura, pH o altri fattori fisici o geochimici… possono far sì che questo tipo di ambienti siano dominanti in un esopianeta potenzialmente abitabile, fattore che potrebbe guidare l’evoluzione della vita. Questi vari ambienti “estremi” sulla superficie della Terra hanno albedo caratteristiche nella banda del visibile (0.4 µm – 0.9 µm) che potrebbero essere distinguibili da remoto. Pertanto, noi studiamo le impronte dei colori che si ottengono dagli ambienti superficiali abitati dalle specie estremofile così come mettiamo alla prova il nostro metodo utilizzando gli spettri di riflessione misurati per gli estremofili.

nella foto: Lisa Kaltenegger

Naturalmente, rilevare caratteristiche di superficie in uno spettro di riflessione non equivale di per sé a rilevare la vita e gli autori sono pronti a sottolineare che il loro metodo è una diagnosi che deve essere utilizzata in combinazione con uno studio dell’atmosfera dei pianeti extrasolari. Ma il documento è un interessante tentativo di mettere in parallelo le caratteristiche note degli ambienti abitati da estremofili con l’astronomia osservativa, riconoscendo che quando arriveremo al punto in cui potremo studiare i mondi rocciosi lontani attraverso immagini reali, lavoreremo a bassissima risoluzione, ai limiti dei nostri strumenti.

Tuttavia, c’è molto che possiamo fare per distinguere la percentuale di superficie coperta da acqua o vegetazione o deserto, un metodo che dovrebbe permetterci di dare la priorità ai pianeti extrasolari più adatti per la spettroscopia in follow-up. Il metodo si basa su studi precedenti del bordo rosso della vegetazione provocato dall’assorbimento nel vicino infrarosso dello spettro durante la fotosintesi, ma espande quel lavoro fino a prendere in considerazione diverse forme di vita che possono vivere sopra o sotto la superficie. Le Piezophilae, per esempio, prosperano sottoposte all’estrema pressione oceanica, mentre le Halophilae crescono in alte concentrazioni di sale.

spettro1Anche se alcuni organismi estremofili – licheni, colonie batteriche e alghe rosse – possono essere rilevati con misurazioni dirette dell’albedo, non avremmo modo di rilevare direttamente molte specie estremofile in uno spettro di riflessione. Possiamo fare un lavoro comunque utile: l’idea è quella di identificare il tipo di caratteristiche di superficie che sarebbero comuni negli ambienti che permettono al loro interno la vita ad organismi estremofili. E la gamma di superfici caratteristiche che possono essere rilevate da questi metodi è ampia: si va da acqua, neve e sale a sabbia, alghe rosse e alberi.

Ci sono moltissime componenti imprevedibili, tra cui il tipo di stella intorno a cui orbita il pianeta, che potrebbero avere un profondo effetto sull’impronta della vegetazione. Man mano che rileviamo pianeti rocciosi intorno a diverse classi di stelle, dovremo di conseguenza modificare i nostri metodi. Dall’articolo:

… L’impronta della clorofilla dei pianeti intorno a stelle calde, potrebbe avere un “bordo blu” per riflettere una parte della radiazione ad alta energia per impedire il surriscaldamento delle foglie… L’impronta della clorofilla dei pianeti in orbita attorno a stelle più fredde potrebbe apparire nera a causa dell’assorbimento totale di tutta l’energia nella banda del visibile tale per cui le piante ottengono tutta la luce possibile per il metabolismo fotosintetico … Pertanto, le posizioni di alberi, colonie microbiche e licheni [sul diagramma mostrato nell’articolo] sono valide solo per un pianeta simile alla Terra che orbiti intorno ad una stella simile al Sole e dovrebbero essere prese come elementi indicativi. L’albedo della vegetazione e degli organismi produttori di clorofilla in presenza stelle non simili al Sole richiede ulteriori studi.”

spettroIl documento di Hegde e Kaltenegger ci indica il primo tipo di lavoro che saremo in grado di eseguire su un pianeta extrasolare nella zona abitabile, una volta che saremo stati in grado di acquisire una sua immagine diretta. Lavorando con organismi estremofili, i ricercatori stabiliscono i limiti ambientali per la vita sul nostro stesso pianeta, base utile per i nostri primi esami in altri mondi di tipo terrestre. La fotometria di base nel visibile usata qui può fornire un primo passo per sondare questi pianeti identificandone i colori caratteristici, collegandoli a nicchie ambientali che permettono la vita. Dovremmo poi attendere che vengano lanciati nello spazio gli strumenti necessari per analizzare le atmosfere di obiettivi di alto valore.

ATTENZIONE: NOTIZIE DELL’ULTIMO MINUTO

Lettera aperta a Facebook

Avviso agli amministratori dei  Gruppi FB

 

Titolo originale: “Colors of a living world” by Paul Gilster, pubblicato il 5 ottobre 2012 su Centauri Dreams. Abbiamo consultato inoltre il documento denominato “Colors of Extreme ExoEarth Environments” in Astrobiology (preprint).

Traduzione di SIMONETTA ERCOLI

Editing DONATELLA LEVI

23 novembre 2015 Posted by | Astrofisica, Astronautica, Planetologia, Scienze dello Spazio, Senza categoria | , , | 4 commenti

CHE BATOSTA !

Asteroid-miningIl Tredicesimo Cavaliere incorre nell’ira funesta di Facebook e perde il più bello scoop della sua storia.

Ecco com’è andata.  

Giovedì 12 novembre alle ore 12:35, il blog pubblica un breve, emozionato comunicato stampa dal titolo: “E’ aperta la caccia agli asteroidi. Potremmo sbagliarci, ma non ci risulta che prima di quell’ora, in quel giorno, qualche altro organo di informazione in lingua italiana, di qualsiasi tipo, avesse già battuto l’importantissima notizia che segue.

Percepiti per anni solo come potenziali portatori di distruzione in caso di impatto con il nostro pianeta, gli asteroidi, oggetto del Space Launch Competitiveness Act approvato ieri dal Senato degli Stati Uniti con un convinto voto bipartisan, appaiono ora in una luce nettamente migliore – esordiva il comunicato stampa, che  chiudeva un paio di dozzine di righe dopo, così: – dal punto di vista minerario, l’insieme di asteroidi e comete che fa parte del Sistema Solare potrebbe valere qualcosa come cento trilioni di dollari  = $1014   E non si può negare che l’attuale livello tecnologico sia perfettamente in grado di sostenere questo nuovo sforzo. Il Congresso Americano l’ha capito e, a quasi cinquant’anni dall’Apollo 11, ha di fatto dato inizio all’Astronautica commerciale e privata

Il canale di diffusione più importante è costituito, per un microblog come il Tredicesimo Cavaliere, dalla rete dei Gruppi di discussione Facebook che raccolgono migliaia di astrofili. L’insieme dei Gruppi Facebook, degli astrofili e dei blog costituisce di fatto una microeconomia virtuosa, dove ognuno ha i suoi doveri e ottiene il suo tornaconto. Facebook fornisce la piattaforma tecnologica su cui si basa il servizio; gli astrofili forniscono lettori ai blog e a FB un pubblico per le campagne pubblicitarie, e, come si è detto, i blog forniscono info e contenuti ad astrofili e Gruppi FB. E’ andata avanti così per anni, con soddisfazione di tutte e tre le parti .

Ma giovedì 12 novembre, Facebook ha posto fine a questa proficua collaborazione con un gesto brutale e senza preavviso, sanzionando l’account FB di chi vi scrive, per 15 giorni, con il blocco della possibilita’ di scrivere e pubblicare nei Gruppi e con la cancellazione degli inviti alla lettura del comunicato stampa di cui sopra. A tutt’ora non mi è stata nemmeno comunicata una motivazione ufficiale.

Ammmesso ma non concesso che io abbia involontarialemte scritto o fatto qualcosa di sindacabile, cosa che comunque nego nel modo più assoluto, nel buio totale in cui mi hanno lasciato posso solo azzardare che FB voglia rifarsi al testo seguente: Le normative di Facebook prevedono che venga messa fine ai comportamenti che potrebbero essere considerati fastidiosi od offensivi dalle altre persone. Abbiamo appurato che hai utilizzato una funzione in un modo che potrebbe essere considerato improprio, anche se non era tua intenzione“. Ma, ripeto, non c’è stato ancora niente di ufficiale.

Ricostruiremo la nostra rete di lettori, servendoci di altri media, che sul web non mancano di certo. Saremo presenti su Twitter, Yahoo e sulle Cerchie di Google, e altri ancora. E non rinunceremo neanche a Facebook, che, al di là dell’arroganza e del senso di onnipotenza che pervade i suoi burocrati, ha pur sempre grandi meriti.

Cosa possono fare i nostri lettori, i nostri amici , e chi apprezza il nostro lavoro?

MOLTISSIMO !

Prima di tutto farsi vivi, aiutarci a diventare più forti condividendo questa pagina e abbonandosi al Tredicesimo Cavaliere (naturalmente è gratuito). Al momento potete farlo solo tramite nostra pagina Facebook, che è ancora disponibile e non credo verrà minacciata. Ma, meglio ancora, se non lo avete già fatto, registratevi anche come utenti diretti di WordPress, il nostro editore:

https://iltredicesimocavaliere.wordpress.com

Tra breve avremo una presenza su Twitter, Yahoo, Google e quant’altro. Ma il lavoro è tantissimo e noi siamo pochi. Perciò la cosa più utile e apprezzata sarà poter disporre di un poco del vostro tempo per un aiuto sul campo, tanto meglio se avete competenze specifiche nel settore dell’editoria sul web.

Inutile dire che chi può aiutarci di più sono proprio gli astrofili e gli appassionati di fantascienza che fin qui ci hanno seguito tramite i Gruppi di Facebook. In teoria si potrebbe tentare anche subito di recuperare quei lettori ristrutturando i rapporti tra noi e i Gruppi su una base diversa e inattaccabile dalla burocrazia di FB. 

A prestissimo, rimanete sintonizzati !

Roberto Flaibani

16 novembre 2015 Posted by | Astrofisica, Astronautica, News, Planetologia, Scienze dello Spazio | , , , , , | 1 commento

E’ aperta la caccia agli asteroidi

Asteroid-miningPercepiti per anni solo come potenziali portatori di distruzione in caso di impatto con il nostro pianeta, gli asteroidi, oggetto del Space Launch Competitiveness Act approvato ieri dal Senato degli Stati Uniti con un convinto voto bipartisan, appaiono ora in una luce nettamente migliore. Si tratta dei rimasugli del processo di formazione del Sistema Solare, milioni di piccoli o grandi pezzi di roccia, minerali vari e acqua sparsi in tutto il Sistema e aggregatisi nel corso del tempo in gruppi e famiglie. Contengono un po’ di tutto, anche minerali preziosi, “terre rare” e perfino elementi non presenti sul nostro pianeta, che potrebbero essere quindi vantaggiosamente importati. Ma probabilmente ciò che di più prezioso troveremo negli asteroidi (e nelle comete!) sarà la semplice acqua. Scomposta nei suoi elementi base , sarà conservata in depositi orbitali e offerta come propellente da usare nel corso delle missioni, mentre oggi deve anch’esso essere trasportato da Terra, riducendo assai il carico utile offerto dal razzo lanciatore.

Tra guadagni e risparmi, le cifre si fanno titaniche: dal punto di vista minerario, l’insieme di asteroidi e comete che fanno parte del Sistema Solare potrebbe valere qualcosa come cento triliardi di dollari. E’ solo una stima che nessuno si sente di confermare, in presenza delle scarse informazioni geologiche ottenute fino ad oggi. E si avvertono nella normativa vigente problemi di politica internazionale, di natura legale e perfino assicurativa. Ma non si può negare che l’attuale livello tecnologico è perfettamente in grado di supportare questo nuovo sforzo. Il Congresso Americano l’ha capito e, in una festa di voti repubblicani e democratici mescolati all’entusiasmo degli imprenditori del settore (Musk, Branson, Bigelow, eccetera), a quasi cinquant’anni dall’Apollo 11, ha di fatto dato inizio all’Astronautica commerciale e privata con parole che in estrema sintesi suonano così:

“Sei capace di prenderlo? Allora fallo, è tuo.”

 

ROBERTO FLAIBANI

12 novembre 2015 Posted by | Astrofisica, Astronautica, Difesa Planetaria, News, Planetologia, Senza categoria | , | 1 commento

INDIA2 – Il programma spaziale indiano guarda lontano.

Il 28 Settembre 2015, la missione PSLV-C30 dell’Indian Space Research Organisation’s (ISRO), cioè l’agenzia Indiana per le ricerche spaziali, ha messo in orbita con successo sette satelliti nello spazio. Questa missione è significativa per diverse ragioni:

  • il suo carico utile principale era un satellite denominato ASTROSAT, il primo osservatorio astronomico indiano a studiare gli oggetti celesti lontani. ASTROSAT può essere considerata la prima missione indiana a scopo interamente scientifico, mentre per molti anni il programma spaziale dell’ISRO è stato orientato principalmente alle applicazioni

  • questo era il trentesimo lancio consecutivo positivo del Polar Satellite Launch Vehicle (PSLV), un razzo che ha già lanciato nello spazio 84 satelliti

  • a bordo c’erano altri sei satelliti: uno indonesiano, uno canadese e quattro nano-satelliti statunitensi. Mettendo questi sei satelliti in orbita, l’India ha ora lanciato 51 satelliti per conto di altre nazioni. Pur essendoci una lunga storia di collaborazioni in ambito spaziale tra l’India e gli Stati Uniti, questa è la prima volta che un’organizzazione americana ha utilizzato un razzo indiano per lanciare i propri satelliti

  • negli ultimi anni ISRO è stata in grado di lanciare una media di due o tre razzi l’anno. PSLV-C30 è il quarto lancio effettuato dall’ISRO nel 2015, e sono ancora previsti uno o due lanci nei prossimi tre mesi

  • Infine, in questa missione era presente una maggiore partecipazione dell’industria indiana. Secondo l’ISRO, per questa missione l’industria ha contribuito quasi il 70% del veicolo, particolarmente nel settore componentistico. Inoltre, l’industria spaziale indiana è stata in grado di soddisfare la difficile tabella di marcia dell’ISRO

astrosat1La vera stella di questa missione è però ASTROSAT. Questo satellite, dal peso di 1.513 chilogrammi, è stato immesso in orbita a un’altitudine di 650 chilometri con un’inclinazione di sei gradi. Il satellite sarà in grado di fare osservazioni dell’universo alla luce visibili, agli ultravioletti e ai raggi X ad alta e bassa energia. La missione ha una durata prevista di 5 anni, e ha cinque strumenti a bordo per studiare vari processi astrofisici. L’ISRO ha progettato questi carichi in collaborazione con varie agenzie spaziali indiane che fanno ricerca nel settore astrofisico. Per alcuni carichi i partner sono stati l’Agenzia Spaziale Canadese e l’Università di Leicester del Regno Unito, che hanno realizzato la camera CCD installata sul Soft X-ray Telescope (SXT) in grado di captare i raggi X deboli.

Secondo l’ISRO, “gli obiettivi scientifici della missione ASTROSAT sono la comprensione dei processi ad alta energia nei sistemi stellari binari con stelle di neutroni e buchi neri, stimare i campi magnetici delle stelle di neutroni, studiare le regioni dove nascono le stelle e i processi ad alta energia nei sistemi stellari oltre la nostra galassia. Compito della missione è anche rilevare nuove sorgenti di raggi X ed effettuare un’indagine limitata a campo profondo dell’universo agli ultravioletti”.

astrosat2L’ISRO ha cominciato il suo viaggio nello spazio con dei satelliti multifunzione, con strumentazionei essenzialmente nei settori meteorologico e delle comunicazioni. Per molti anni l’ISRO si è concentrata sullo sviluppo dell’osservazione terrestre e sui satelliti per il telerilevamento. Più di recente l’India ha fatto degli investimenti significativi nei sistemi di navigazione basati nello spazio. Le missioni verso la Luna e Marte avevano fondamentalmente l’obiettivo di una dimostrazione di capacità tecnologiche. ASTROSAT può essere dunque considerato la prima missione indiana a scopo esclusivamente scientifico. Questo satellite è il primo osservatorio indiano concepito per studi simultanei a multi frequenza in grado di fornire una comprensione complessiva dell’universo. Il costo stimato di ASTROSAT è di circa 24 milioni di Euro.

astrosat4Ci sono molti altri osservatori spaziali lanciati in passato, come il Rossi X-ray Timing Explorer, il Chandra X-ray Observatory, XMM-Newton, Galex, FUSE, and Suzaku. Queste missioni hanno delle capacità a banda stretta, o nelle regioni ai raggi X o agli ultravioletti, mentre ASTROSAT ha capacità di osservazione a banda larga in entrambe le regioni. La missione si concentra sull’imaging ultravioletto ad alta risoluzione per lo studio morfologico degli oggetti galattici e ultragalattici, studi a banda larga di fonti di emissione a raggi X e altri obiettivi con diverse lunghezze d’onda, dalle stelle più vicine ai nuclei galattici attivi più distanti.

Per sviluppare questo satellite astronomico è stato necessario molto più tempo del previsto. Il progetto è iniziato nel 2004, ma per gli scienziati è stato molto complesso sviluppare i vari strumenti scientifici della missione. Ci sono voluti 11 anni per creare l’SXT. Questo telescopio necessita di 320 specchi di alluminio, che sono progettati con enorme precisione e hanno un sottile rivestimento d’oro. Questi specchi sono disposti come gusci concentrici, con dei montanti per fissarli. La precisione del loro posizionamento è di 20 micron, vale a dire uno spessore inferiore a quello di un capello umano. Secondo gli scienziati coinvolti nel progetto, soltanto mettere a punto questi specchi è costato tre anni di lavoro. Questo carico è stato sviluppato dal Tata Institute of Fundamental Research (TIFR) di Mumbai, India, e l’Università of Leicester. Il lancio del satellite era originariamente previsto per il 2010, ma per una serie di ragioni è stato poi procrastinato.

astrosat3L’India ha lanciato il suo primo satellite nel 1975, chiamandolo Aryabhata, dal nome di un astronomo indiano. Questo satellite doveva svolgere specifici esperimenti scientifici che coinvolgevano un’astronomia a raggi X e il rilevamento di neutroni ad alta energia e raggi gamma dal sole, più altri oggetti come carico pagante. Benché l’avventura spaziale indiana sia cominciata con un approccio scientifico, non continuò allo stesso modo, concentrandosi invece negli ultimi quarant’anni su programmi orientati all’applicazione. L’India investì nel settore spaziale essenzialmente a scopo di sviluppo socio-economico. L’ISRO lanciò satelliti principalmente per il telerilevamento, le comunicazioni, la meteorologia e la navigazione. L’unica eccezione furono le sue missioni sulla Luna e su Marte. In qualche caso limitato alcuni satelliti indiani trasportarono alcuni carichi paganti aventi scopo scientifico. GSAT-2 (lanciato nel maggio 2003) portava quattro carichi utili sperimentali, inclusi un RADOM (radiation dose monitor) e uno spettrometro a raggi X. Anche un satellite denominato YouthSat, una missione congiunta di studenti universitari indiani e russi, aveva strumenti scientifici per osservare le eruzioni solare e studiarne l’impatto sulla nostra atmosfera.

L’India viene talvolta criticata per il fatto di intraprendere missioni con una massa di carico utile scientifico molto limitata. Ad esempio il carico scientifico della missione lunare Chandrayaan-1 Moon aveva una massa totale di 90 chilogrammi e 11 strumenti, mentre la missione Marte portava solo cinque sensori per un peso complessivo di 15 chilogrammi. L’ISRO non è in grado di lanciare veicoli più pesanti date le limitazioni inerenti al razzo PSLV, ma per missioni su un’orbita bassa come ASTROSAT il PSLV è in grado di sollevare carichi molto più pesanti

astrosat5ASTROSAT non ha un significato solo per l’astronomia, ma indica che l’India è ora pronta a sviluppare delle missioni con satelliti a finalità puramente scientifica. Fino ad ora l’India non era pronta per investire sulle missioni scientifiche. Durante gli ultimi quarant’anni l’India ha fatto progressi significativi in molti campi scientifici. Ora, dopo aver dedicato sufficienti investimenti verso lo sviluppo di risorse tecnologiche volte a soddisfare le necessità di servizi sociali, l’India sembra pronta a investire nelle missioni scientifiche pure. L’India non dovrebbe avere più timore delle critiche sia interne che internazionali relative al conflitto tra gli investimenti aventi per fine la ricerca scientifica e quelli contro la povertà. In realtà, investire in modo intelligente nella tecnologia favorisce la prosperità. Sono gli investimenti nella scienza che possono poi risultare in un maggiore sviluppo tecnologico, pertanto l’ISRO dovrebbe investire ancora di più nelle missioni scientifiche.

Titolo originale: “India’s space program looks outwards” di Ajey Lele, pubblicato su The Space Review il 5 ottobre 2015. Il Dr. Lele lavora presso l’Institute for Defence Studies and Analyses (IDSA) un centro studi con sede a New Delhi specializzato su problemi relativi alla sicurezza. Ha ricevuto inoltre il dottorato di ricerca in Fisica e quello in relazioni internazionali. Le sue ricerche si concentrano su argomenti relativi alle tecnologie delle armi strategiche di distruzione di massa. A suo credito può vantare inoltre una intensa attività come pubblicista.

traduzione di DONATELLA LEVI

editing ROBERTO FLAIBANI

21 ottobre 2015 Posted by | Astrofisica, Astronautica, News, Scienze dello Spazio | , , , | Lascia un commento

eso8. Fondare colonie

 Abbiamo voluto riproporre con la sigla eso, che contraddistingue gli interventi dedicati agli esopianeti, questo articolo apparso sulle nostre pagine ormai un paio di anni fa. Anche se gli eccessi e i fraintendimenti nell’uso del termine abitabilità continuano, anzi dopo il ritrovamento di tracce d’acqua sulla superficie di Marte ormai dilagano, concetti alternativi come colonizzabilità e demandite rimangono molto interessanti, e questo articolo, che ne parla, mantiene intatto il suo valore. (RF)

 eso8 MarsOneLe sonde dedicate alla ricerca degli esopianeti continuano a fornire risultati interessanti. Sappiamo ora che la maggior parte delle stelle possiede sistemi planetari, e che una sorprendente percentuale di questi sarà costituita da pianeti delle dimensioni della Terra, situati nella loro zona di abitabilità, cioè la regione in cui non fa né troppo caldo né troppo freddo, e la vita come noi la conosciamo può svilupparsi. Gli astronomi sono completamente affascinati dal concetto di zona di abitabilità e da quello che potrebbero trovare. Abbiamo l’opportunità, nell’arco della nostra esistenza, di scoprire se la vita esiste fuori dal nostro sistema solare e forse quanto essa è comune. Abbiamo anche un’altra opportunità , meno frequentata dagli astronomi ma comune tra gli scrittori di fantascienza. Per la prima volta nella storia, possiamo essere in grado di identificare mondi dove potremmo trasferirci e vivere. Nel momento in cui decidiamo di riflettere sulla seconda possibilità, è importante tenere bene in mente che abitabile e colonizzabile non sono sinonimi.

Nessuno sembra accorgersene, ma non è possibile trovare alcun termine se non “abitabilità “ per descrivere gli esopianeti che stiamo trovando. Che un pianeta sia abitabile, in accordo con la definizione corrente del termine, non ha niente a che vedere con la possibilità che degli esseri umani si stabiliscano in quel luogo. Cosi il termine si applica a luoghi che sono di importanza vitale per la scienza ma non si applica necessariamente a luoghi dove noi vorremmo effettivamente andare. In altre parole il fatto che un pianeta sia abitabile (secondo l’attuale definizione) non ha niente a che fare con l’eventuale fondazione di una colonia.

eso8 supeterraLa differenza tra abitabile e colonizzabile

Rivolgiamo la nostra attenzione verso due pianeti molto diversi tra loro: Gliese 581g e Alpha Centauri Bb. Non abbiamo conferma dell’esistenza di nessuno dei due ma abbiamo abbastanza dati per poter dire a che cosa assomigliebbero se la loro esistenza venisse confermata.

Gliese 581g è una super-terra che orbita nel mezzo della zona di abitabilità della sua stella, ciò significa acqua liquida che scorre liberamente in superficie e lo rende un mondo abitabile secondo l’attuale definizione.

Centauri Bb, al contrario, orbita molto vicino alla sua stella e la sua temperatura in superficie è probalbilmente abbastanza alta da rendere uno dei suoi emisferi un mare di magma (il pianeta è collegato alla sua stella da un sistema di maree come la Luna lo è alla Terra). Alpha Centauri Bb viene considerato dai più non abitabile. Gliese 581g è abitabile e Centauri Bb non lo è ; ma ciò significa forse che il primo è più colonizzabile del secondo? In effetti non lo è. Dato che Gliese 581g è una super-terra, ovviamente la gravità in superficie sarà maggiore che sulla Terra. Le stime variano ma si arriva anche a ippotizzare una forza di gravità pari a 1,7g, come dire che un uomo di 78 chili ne peserà oltre 125 su Gliese 581g. Se il nostro uomo convertisse tutto il suo attuale grasso corporeo in massa muscolare potrebbe essere in grado di andare in giro senza usare supporti ortopedici per la deambulazione, se non proprio una sedia rotelle. Comunque il suo sistema cardiovascolare sarebbe sottoposto a uno sforzo permanente e  non ci sarebbe modo di rendere il suo habitat più confortevole.

eso8 - base minerariaAll’opposto, Centauri Bb è circa delle stesse dimensioni della Terra, e la gravità in superficie è probabilmente la stessa. Siccome si trova in risonanza mareale con il suo sole, un emisfero è sicuramente ricoperto da un mare di lava, ma l’altro emisfero, quello permanentamente in ombra, sarà più freddo, potenzialmente molto più freddo. È probabile che non ci sia nemeno un soffio di atmosfera, né acqua liquida, ma come posto dove costruire un avanposto non sarebbe da buttar via. Bisogna considerare anche che spostare materiali dalla superficie all’orbita bassa sarebbe più facile nel caso di Centauri Bb, mentre l’atmosfera presumibilmente spessa di Gliese 581g renderebbe più difficile la soppravivenza degli esseri umani. Senza dubbio Gliese è un buon candidato per lo sviluppo della vita, ma secondo me Centauri Bb è un candidato migliore per ospitare una colonia.

 Definizione di colonizzabilità

 Abbiamo una definizione molto buona di cosa rende abitabile un pianeta: una temperatura stabile, atta alla formazione di acqua liquida in superficie. È possibile sviluppare una definizione di colonizzabilità per un pianeta, egualmente o più soddisfacente. Come prima cosa un mondo colonizzabile deve avere una superficie accessibile. Una super-terra con un’atmosfera incredibilmente spessa e una gravità di superficie di 3 o 4g è del tutto non colonizzabile, sebbene vi si possa trovare abbondanza di vita.

eso8 exocity1 In secondo luogo, gli elementi giusti devono essere accessibili sul pianeta perchè esso sia colonizzabile. A prima vista sembra un po’ sconcertante, ma che succederebbe se Centauri Bb fosse l’unico pianeta nel suo sistema, e ci fossero solo tracce di azoto? Non è un problema di quantità, un pianeta come quello (in un sistema stellare come quello) non potrebbe dare supporto a una colonia di forme di vita terrestre. L’azoto, anche solo tracce di esso, è un componente critico della vita biologica.

 In un articolo intitolato The Age of Substitutibility, pubblicato su Science nel 1978, H.E. Goeller e A.M. Weinberg hanno proposto un minerale artificiale chiamato Demandite. Si presenta in due forme. Una molecola di Demandite industriale conterrà tutti gli elementi necessari per una industria edile e manifatturiera nelle proporzioni che uno otterrebbe se prendesse, diciamo, una città di media dimensione e la riducesse in polvere finissima. Ci sono 20 elementi nella Demandit industriale, incluso carbonio, ferro, sodio, cloro, ecc…

All’opposto, la Demandite biologica è composta quasi interamente di solo 6 elementi: indrogeno, ossigeno, carbonio, azoto, forforo e zolfo. (Se un intero sistema ecologico venisse macinato e si osservassero le proporzioni di questi elementi, potresti in realtà scoprire che esiste una singola molecola con le esatte proporzioni richieste: si chiama cellulosa).

 eso8 exocity2Terzo, in superficie deve esserci un flusso di energia in qualche modo gestibile. Il posto può essere tanto rovente che ghiacciato, ma deve essere possibile per noi muovere liberamente il calore. Di sicuro questo non è fattibile sulla superficie di Venere, che, con i suoi 800 gradi di temperatura obbligherebbe il vostro sistema di aria condizionata a un demenziale super lavoro solo per superare l’inerzia termica. L’accesso a un gradiente termico o energetico è quello che rende possibile il lavoro fisico. Ovviamente cose come la pressione superficiale, l’intensità stellare, la distanza della Terra giocano una grande parte, questi sono i tre fattori più importanti che io posso vedere. Dovrebbe essere ovvio all’istante che essi non hanno nessun rapporto con la distanza dei pianeti dal loro sole. Non c’è una “zona colonizzabile” come invece esiste una “zona abitabile”. Bisogna osservare la situazione pianeta per pianeta.

Si noti che, secondo queste definizioni, Marte è solo marginalmente colonizzabile. Perchè? Non a causa della sua temperatura o della bassa pressione atmosferica, ma perchè è scarsamente dotato di azoto, almeno in superficie. Una combinazione di Marte e Ceres potrebbe essere qualcosa di colonizzabile, se Ceres avesse una buona scorta di azoto nella sua borsetta del trucco, e questa idea di ambienti combinati in attesa di colonizzazione complicava la visione d’insieme. Probabilmente non siamo in grado di rilevare un oggetto delle dimensioni di Ceres, se orbitasse intorno ad Alpha Centauri. Cosi la lunga distanza che ci separa da un pianeta candidato alla colonizzazione difficilmente potrebbe esere considerata come un elemento a sfavore. Al contrario, se possiamo rilevare la presenza di tutti gli elementi necessari per la vita e per l’industrializzazione in un pianeta all’incirca di dimensioni terrestri, possiamo considerarlo come candidato alla colonizzazione senza badare al fatto che si trovi o meno nella zona abitabile della sua stella.

 eso8 exocity3La colonizzabilità di un pianeta accessibile e dotato di un buon gradiente termico, può essere valutata in funzione di quanto la sua composizione si avvicini alla composizione della Demandite industriale e biologica. Probabilmente dovremo diventare molto accurati nella determinazione di tali valori. Questo, e non l’abitabilità, è il giusto modo di valutare quali mondi dovremmo desiderare visitare.

 Ricapitolando, propongo che venga aggiunto un secondo criterio di misura oltre alla già esistente scala di abitabilità nello studio degli esopianeti. L’abitabilità di un pianeta non ci dice nulla in merito al grado di attrazione che potrebbe avere sui visitatori. Colonizzabilità è la metrica perduta per giudicare il valore dei pianeti extrasolari.

Traduzione di ROBERTO FLAIBANI

 

Titolo originale :”A tale of two worlds: habitable, or colonizable?” di Karl Schroeder, pubblicato su Karl Schroeder’s Blog il 18 febbraio 2013

12 ottobre 2015 Posted by | Astrofisica, Astronautica, Scienze dello Spazio | , , , | Lascia un commento

WFIRST – una visione più ampia

WFIRST1La NASA sta lavorando alacremente alla preparazione del lancio nel 2018 del telescopio spaziale James Webb (JWST), successore dell’onorato telescopio spaziale Hubble (HST), che ha celebrato il suo 25° compleanno in aprile. Guardando oltre a JWST, la NASA ha indicato in WFIRST (Wide Field Infrared Survey Telescope) il suo prossimo e ambizioso telescopio spaziale di punta.

Se nel 2016 verrà approvato, WFIRST potrà essere pronto per il lancio nel 2024, in una missione per studiare l’energia oscura, eseguire ampie osservazioni nell’infrarosso della galassia e del cielo extragalattico, rivoluzionare la nostra conoscenza della demografia dei sistemi planetari e fare un grande passo in avanti nella tecnologia necessaria alla scoperta e allo studio di un altro “pianeta azzurro” intorno ad una stella vicina.

L’origine di WFIRST

WFIRST è nato nel corso dell’indagine che l’Osservatorio Decennale di Astronomia ed Astrofisica del Consiglio Nazionale per la Ricerca ha svolto nel 2010, un evento che ha luogo ogni dieci anni in cui la comunità astrofisica statunitense studia i concept di missione e le questioni scientifiche fondamentali, per poi emanare raccomandazioni alle diverse agenzie governative che supportano la ricerca astrofisica (la NASA, la National Science Foundation e il Dipartimento dell’Energia).

Tre delle più affascinanti proposte presentate per la valutazione avevano obiettivi scientifici molto diversi ma analogie nelle implementazioni del loro hardware, quali uno specchio primario di circa 1,3 metri di diametro e una grande camera ad infrarosso. Il Decadal Survey concluse che gli obiettivi scientifici delle tre proposte potevano essere realizzati da un unico telescopio spaziale. Fu dunque raccomandato che, per quanto riguardava i grandi progetti astronomici spaziali (superiori a 1 miliardo di dollari), la NASA perseguisse prioritariamente questa missione.

Alla fine del 2010 l’agenzia aveva dunque riunito un gruppo di scienziati e ingegneri allo scopo di iniziare la programmazione di WFIRST. Mentre il team iniziava a elaborare il progetto dettagliato del telescopio, in un’altra sezione dell’Agenzia si stavano svolgendo negoziati che promettevano di cambiare profondamente la configurazione di WFIRST. Infatti, agli inizi del 2011 il National Reconnaissance Office (NRO), un’agenzia di ricerca statunitense, donò alla NASA due telescopi spaziali inutilizzati che erano stati costruiti una decina di anni prima, ma che non erano mai stati messi in orbita. Questi telescopi avanzati avevano specchi di 2,4 metri di diametro, la stessa dimensione dell’HST e quasi il doppio del diametro programmato inizialmente per WFIRST. La NASA accettò i telescopi ma non rivelò la loro esistenza al pubblico (nemmeno al team di WFIRST!) fino al giugno 2012. Quest’elevata tecnologia incrementò enormemente le capacità di WFIRST, permettendo un’area di raccolta della luce quattro volte più ampia di quella programmata e una capacità di risoluzione doppia. Il primo telescopio donato dall’NRO fu chiamato AFTA (Astrophysics Focused Telescope Assat) e l’incarnazione di WFIRST che utilizza questo gradito regalo viene spesso chiamato WFIRST-AFTA. Il secondo telescopio sarà messo da parte fino a quando la NASA non troverà un’altra applicazione idonea e il finanziamento necessario per utilizzarlo al meglio.

wfirstesopianetiUN TELESCOPIO AVANZATO, QUATTRO OBIETTIVI

Considerati i 25 anni di servizio dell’HST, ci si potrebbe chiedere quale sia il vantaggio di un altro telescopio spaziale delle stesse dimensioni. La risposta sta nell’incredibile campo visivo di WFIRST, ovvero quanta parte di cielo può vedere in una sola volta. Per le lunghezze d’onda vicine all’infrarosso, che sono scientificamente interessanti ma relativamente difficili da osservare utilizzando telescopi terrestri, HST ha una camera da 1 megapixel, ma WFIRST avrà uno schieramento di sensori che lo porteranno ad un colossale 288 megapixel! Nei suoi 25 anni HST ha osservato alcune decine di gradi quadrati di cielo (sugli oltre 40.000 gradi quadrati di cielo); WFIRST, invece, sarà in grado di scrutare migliaia di gradi quadrati all’anno. Sebbene JWST, successore dell’HST, avrà uno specchio molto più grande (6,5 metri), il suo campo visivo rimarrà simile a quello dell’HST, mentre quello, davvero stupefacente, di WFIRST lo porterà ad osservare ampie aree di cielo, un requisito indispensabile per tre dei suoi quattro obiettivi fondamentali.

Primo obiettivo : comprendere l’energia oscura

Nel 1998 due squadre di astronomi scoprirono contemporaneamente che l’espansione dell’universo sta accelerando, invece che rallentare come si pensava in precedenza. La scoperta di questa espansione accelerata fece loro guadagnare il Premio Nobel per la fisica 2011 a pari merito. “Energia oscura” è il nome onnicomprensivo che gli scienziati danno a qualunque forza o proprietà dello spazio-tempo stia causando l’accelerazione dell’espansione. Mentre conosciamo molto poco riguardo a questa misteriosa energia oscura, gli astronomi ora ritengono che possa essere la componente prevalente del rapporto totale massa/energia dell’universo.

WFIRST userà tre tecniche per studiare gli effetti dell’energia oscura. La prima consiste nell’esaminare le esplosioni stellari, o supernovae, che oscurano per breve tempo la luce dei circa 100 miliardi di altre stelle nelle loro galassie ospiti. Studiando queste esplosioni, possiamo vedere attraverso grandi distanze: in pratica, scrutando indietro per due terzi del percorso verso il Big Bang, possiamo vedere come l’universo si sia espanso sotto l’influenza dell’energia oscura. WFIRST esaminerà anche le posizioni delle galassie nello spazio, dal momento che l’energia oscura lascia una firma rivelatrice sul raggruppamento spaziale delle galassie. Infine, WFIRST utilizzerà l’effetto lente gravitazionale debole, in cui la presenza della materia curva il percorso della luce (un effetto molto simile al microlensing). La lente debole si riferisce alle piccole distorsioni nelle forme di galassie lontane causate dalla massa presente tra noi e quelle galassie, dandoci informazioni sulla massa stessa e sugli effetti che ha su di essa l’energia oscura.

wfirstgalassieSecondo obiettivo: osservazioni del cielo nell’infrarosso

Le prime notizie di stampa riguardanti WFIRST si sono focalizzate soprattutto sull’energia oscura che, se pur entusiasmante, è solo una delle aree in cui si prevede che WFIRST avrà un forte impatto. WFIRST terrà da parte un anno e mezzo di tempo a disposizione di osservatori ospiti. Astronomi di tutto il globo, in competizione fra loro, potranno richiedere del tempo su WFIRST per utilizzare le sue capacità uniche di osservare il cielo nell’infrarosso. Gli esperti valuteranno le richieste e assegneranno il tempo per eseguire le osservazioni più interessanti dal punto di vista scientifico. Favorendo l’implementazione delle idee migliori, WFIRST potrà offrire dei grandi contributi in diverse aree dell’astronomia.

Terzo obiettivo: ricerca di pianeti extra-solari

Il terzo e il quarto aspetto di WFIRST si riferiscono allo studio dei pianeti extra-solari (più brevemente esopianeti). L’indagine di microlensing operato da WFIRST potrà rilevare oltre 2.000 pianeti, inclusi quelli analoghi ai pianeti del nostro sistema solare eccetto Mercurio, che è troppo vicino alla sua stella. WFIRST è complementare alla missione Kepler della NASA, destinata alla scoperta dei pianeti, in cui Kepler si è distinta nel trovare i pianeti caldi (quelli vicini alle loro stelle madri) mentre WFIRST eccelle nel trovare i pianeti freddi (quelli più lontani dalle loro stelle) e persino i cosidetti pianeti nomadi, che non orbitano intorno a nessuna stella. WFIRST completerà pertanto la rilevazione demografica dei pianeti nella nostra galassia iniziata da Kepler e ci dirà quanto siano comuni i diversi pianeti in tutti i loro gradi di dimensioni, temperature e distanze dalle stelle ospiti. Questo favorisce l’obiettivo a lungo termine della NASA di comprendere la frequenza dei pianeti nella zona abitabile, la regione intorno a una stella in cui è possibile la presenza di acqua liquida. Gli scienziati pensano che un pianeta delle dimensioni della Terra nella zona abitabile sia la nostra migliore scommessa per trovare la vita al di fuori del nostro sistema solare.

coronografoQuarto obiettivo: osservare gli esopianeti usando il coronografo

Il microlensing, che ci permette di individuare gli esopianeti ma non di vederli direttamente, era il livello di competenza che ci si aspettava da WFIRST per la scoperta degli esopianeti, secondo quanto previsto dalla Decadal Survey nel 2010. Tutto questo è emozionante, ma gli scienziati vorrebbero anche poter essere in grado di avere immagini dirette degli esopianeti per studiarli con maggiore dettaglio. Con la donazione dell’hardware di AFTA, questo è diventato possibile. Il telescopio AFTA, più grande, ha permesso alla NASA di aggiungere a WFIRST un coronografo, per consentire una rappresentazione diretta degli esopianeti più prossimi; fatto tecnicamente impegnativo, perché essi sono molto vicini alle stelle (secondo la scala astronomica) e molto meno luminosi della loro stella. Quindi un coronografo deve bloccare quanta più luce possibile dalla stella centrale, così da permettere agli altri strumenti di catturare quella, relativamente debole, proveniente dal pianeta. Il Decadal Survey ha messo lo sviluppo di una tale tecnologia in cima alle sue priorità per gli investimenti cosiddetti di “media entità” (centinaia di milioni di dollari) per l’astronomia spaziale. L’aggiunta di un coronografo a WFIRST permetterà che questa raccomandazione venga rispettata, non solo sviluppando la tecnologia in laboratorio ma anche facendola volare nello spazio. L’indice di contrasto previsto del coronografo WFIRST è un migliaio di volte superiore a qualsiasi cosa sia già stata realizzata – e negli ultimi due anni sono stati fatti dei grandi progressi nei test di laboratorio verso questo obiettivo. Se ci si riuscirà, grazie a WFIRST saremo in grado di rilevare direttamente pianeti della dimensione di Nettuno o più grandi.

RIPRENDERE LE IMMAGINI DI UN ALTRO PIANETA AZZURRO

Il coronografo di WFIRST è solo il punto di partenza verso una missione ancora più entusiasmante nel futuro. Se l’uso di un coronografo su WFIRST per riprendere immagini di esopianeti avrà successo, apriremo la strada ad una missione successiva con un telescopio e un coronografo più potenti. Una tale missione potrebbe essere in grado di riprendere immagini (e spettri) di pianeti delle dimensioni della Terra nella zona abitabile di stelle vicine. Questo ci permetterebbe di cercare la presenza di acqua e ossigeno – possibili segni di vita – nelle atmosfere di questi pianeti. WFIRST quindi rappresenterà un passo avanti verso la scoperta di un altro “pianeta azzurro” e la comprensione della presenza della vita nell’universo.

Traduzione di SIMONETTA ERCOLI

editing di DONATELLA LEVI

Titolo originale: ” A Wider View” by Jason Rhodes

JASON RHODES è un “cosmologo dell’osservazione” in forza al JPL della NASA, e sta lavorando per comprendere i misteri della materia e dell’energia oscure usando telescopi come WFIRST, oppure come Euclide dell’ESA. Quando non è impegnato a progettare missioni spaziali, dedica il suo tempo alla moglie Alina, sua collega cosmologa al JPL.

L’articolo è stato pubblicato per la prima volta da The Planetary Report 2015 v35, n.02

WFIRST

wfirst immagine

Galleria Immagini

wfirstmicrolensing1.

Come risultato dell’effetto di microlensing, la luminosità di una stella lontana misurata da un telescopio aumenta e poi diminuisce con il tempo (come si vede dalla curva rossa in alto), quando una stella e/o un pianeta ci passa davanti.

Che cosa è il microlensing gravitazionale?
Il
microlensing approfitta del fatto che la materia piega lo spazio e curva il percorso della luce, permettendo a corpi massivi di agire come lenti di ingrandimento. Riprendendo le immagini di molte migliaia di stelle nel nucleo centrale densamente popolato della galassia e misurandone la luminosità, possiamo aspettarci una sovrapposizione di una stella che funge da lente in primo piano su una stella sorgente sullo sfondo. La massa della stella lente ingrandisce l’immagine della stella sorgente passandovi davanti, proprio come farebbe una lente di vetro. Quando questo avviene, noi rileviamo un’apparente maggiore luminosità della stella. Contemporaneamente appaiono due immagini della stella sullo sfondo, troppo vicine tra loro perché noi le si possa distinguere (anche con WFIRST); comunque queste immagini non sono fondamentali per il processo di rilevamento. In qualche caso, la stella in primo piano avrà un pianeta e quel pianeta agirà brevemente come un’altra lente per la stella sorgente, causando una piccola, veloce anomalia nel lento cambiamento della “curva della luce”, o misura della luce totale raccolta dalla stella. Questa piccola anomalia indica la presenza del pianeta, e la relativa forma dell’anomalia, insieme con la curva totale della luce di microlensing, può darci informazioni sul rapporto tra le masse delle stelle ed il pianeta ed anche sulla distanza tra la stella lente ed il pianeta.

2.wfirst-kepler

Mentre la soda spaziale Kepler è molto più sensibile nel rintracciare i pianeti vicini alle loro stelle madri, WFIRST sarebbe molto più sensibile verso quelli lontani, come mostrato in questo diagramma della distanza dalla stella madre rispetto alla massa degli esopianeti. Le scoperte di pianeti stimate per Kepler sono mostrate come punti arancioni; i punti verdi sono le simulazioni delle future scoperte di WFIRST. Quest’ultimo sarà anche in grado di trovare pianeti non legati a stelle madri. I punti grigio scuro rappresentano esopianeti non rilevati da Kepler. Solo per gioco sono stati aggiunti la Terra e altri pianeti.

Screenshot 2015-09-27 10.303.

Questa simulazione di un’immagine ottenuta con un coronografo illustra come la schermatura della luce brillante di una stella permette l’osservazione della luce relativamente debole dei suoi due pianeti. La donazione dell’Astrophysics Focused Telescope Asset (AFTA) permette di aggiungere un coronografo a WFIRST, permettendo agli scienziati di andare alla ricerca di esopianeti nello spazio.

coronografo14.

un coronografo non è il solo modo per bloccare la luce di una stella in modo da consentire un’immagine diretta di un esopianeta. La NASA sta studiando dei concept per un’opzione esterna denominata starshade (ombrello stellare). Questa navicella a volo libero potrebbe essere manovrata posizionandola precisamente in modo da lasciare che la luce di un pianeta oltrepassi il suo bordo esterno, mentre la parte più interna blocca la luce della stella. I “petali” dello starshade creano un bordo più tenue che diminuirebbe la curvatura della luce. Per vedere un’animazione dell’apertura dello starshade, (qui in immagine), e anche un video del test di apertura del prototipo presso lo JPL, andare a planet.ly/starshade

28 settembre 2015 Posted by | Astrofisica, Astronautica, News, Planetologia, Scienze dello Spazio | , , , , , , , , | Lascia un commento

%d blogger hanno fatto clic su Mi Piace per questo: