Il Tredicesimo Cavaliere

Scienze dello Spazio e altre storie

eso 11 – I colori della vita extraterrestre

Un giorno non lontano avremo gli strumenti in grado di esaminare in profondità la luce proveniente da un mondo di tipo terrestre orbitante intorno ad un’altra stella. Questo apre alla possibilità di identificare gas atmosferici come ossigeno, ozono, anidride carbonica e metano. Tutti questi gas possono trovarsi in un ambiente privo di vita, ma se li troviamo presenti contemporaneamente in quantità abbastanza rilevanti, avremo individuato una possibile firma biologica, perché se non c’è un’attività vitale che li ricostituisce, questi gas si ricombinerebbero e ci lascerebbero con un miscuglio atmosferico molto meno interessante.

Ma studiare le atmosfere dei pianeti per trovare le tracce di vita è solo uno dei modi di procedere. Un team interdisciplinare, guidato da Lisa Kaltenegger della Cornell University e Siddharth Hegde (Istituto Max Planck per l’Astronomia), cioè gli stessi protagonisti dell’articolo pubblicato pochi giorni fa, eso10 – I colori di un mondo che vivesta esaminando la presenza della vita con una rilevazione basata sul colore caratteristico delle forme di vita. Un organismo estraneo che copra gran parte del pianeta, per esempio pensiamo alle foreste sulla Terra, rifletterebbe la luce a particolari lunghezze d’onda, luce che potrebbe essere misurata con la spearth_reflectanceettrometria.

Immagine: In questa immagine satellitare composita della NASA, è possibile vedere una componente dominante verde nella luce riflessa del sole, un segno diretto della vita vegetale presente sulla superficie terrestre. Allo stesso modo, se la vita microbica con una particolare pigmentazione coprisse vaste zone di superficie di un pianeta extrasolare, la sua presenza potrebbe in linea di principio essere misurata direttamente grazie alla sua tinta nella luce stellare riflessa osservata attraverso i nostri telescopi. Credit: NASA Earth Observatory.

 La sfida, e quindi l’impegno del lavoro preliminare basato su questi presupposti, è quello di capire quali tracce spettrali i diversi tipi di organismo potrebbero emettere. Lavorando con i colleghi al centro di ricerca Ames della NASA , i ricercatori hanno messo insieme un catalogo tratto da colture di 137 diverse specie di microrganismi, alla ricerca di una vasta gamma di pigmentazioni delle specie presenti in ambienti diversi, come il deserto di Atacama in Cile, l’acqua marina delle Hawaii, un vecchio pezzo di legno trovato in un parco dello Stato del Missouri e le sorgenti di acqua calda del Parco Nazionale di Yellowstone. Concentrandosi sulle specie estremofile (in cui la vita è spinta al suo limite), il team ha potuto fare indagini sulla più ampia gamma possibile di condizioni fisiche e geo-chimiche sulla superficie dei pianeti extrasolari. 

Il metodo, preso in esame in un nuovo saggio su Proceedings of the National Academy of Sciences, consiste nel misurare l’impronta digitale chimica di ogni coltura di microorganismi e pubblicare i risultati in un catalogo on line. Gli spettri di riflessione sono prodotti nella lunghezza d’onda del visibile e nel vicino infrarosso e sono organizzati nella prima banca dati di questo tipo dedicata alle tracce di vita superficiale. Il catalogo era progettato per rispecchiare la più ampia gamma di vita possibile, sapendo che sul nostro pianeta le specie dominanti hanno subito profondi cambiamenti.

Dal documento:

Sebbene ci sia una considerevole conoscenza di base delle proprietà spettrali delle piante terrestri, sono pochissime le informazioni presenti in letteratura riguardo a quelle dei microorganismi. Le piante terrestri sono attualmente molto diffuse sul pianeta e sono facilmente rilevate dalle osservazioni ad alta risoluzione delle sonde spaziali. Comunque, esse occupano solo una piccola nicchia nel parametro ambientale che raggruppa la vita terrestre conosciuta. Inoltre, le piante terrestri si sono diffuse sulla Terra solo circa 460 milioni di anni fa, mentre gran parte della storia della vita è stata dominata dalla vita microbica unicellulare. All’interno degli organismi procarioti ed eucarioti c’è una diversità di pigmentazione di gran lunga maggiore che nelle piante terrestri. Per questa ragione tutte le ipotesi riguardo a una vita extraterrestre basate soltanto sulle piante terrestri finiscono per tralasciare una gran parte della vita conosciuta.”


standard_sans_rightImmagine: Otto dei 137 campioni di microrganismi utilizzati per misurare le firme biologiche per il catalogo. In ogni pannello, la parte superiore è una fotografia standard del campione e la parte inferiore è una microfotografia, una versione ingrandita a 400x dell’immagine superiore. Gli scienziati miravano a raggiungere una diversità di colori e pigmentazione. Da in alto a sinistra a in basso a destra: specie sconosciute del genere Bacillus (deserto di Sonora, AZ, USA); specie sconosciuta di genere Arthrobacter (Deserto di Atacama, Cile); Protothecoides Chlorella (linfa di un pioppo bianco danneggiato); specie sconosciuta di genere Ectothiorhodospira (Big Soda Lake, NV, USA); specie sconosciuta di genere Anabaena (con proteina fluorescente verde, d’acqua dolce stagnante); specie sconosciuta di genere Phormidium (Kamori Canale, Palau); Porphyridium purpureum (legno vecchio presso una sorgente salata, Boone’s Lick State Park, MO, USA); Dermocarpa violacea (deflusso di acquario, La Jolla, CA, USA). Credit: Hegde et al. / MPIA.

Gli organismi unicellulari che hanno dominato la storia della Terra hanno prosperato per 3.5 miliardi di anni e forse più, dimostrando ripetutamente di poter essere trovati nelle condizioni più estreme , dall’interno dei reattori nucleari (Chernobyl) ai deserti e alle regioni polari. La loro particolare pigmentazione dipenderà dalle condizioni ambientali locali e così la loro futura scoperta grazie ai telescopi spaziali ci dirà qualcosa riguardo al pianeta che essi abitano. L’indice di riflessione da parte delle forme di vita superficiali gioca anche un ruolo importante nei modelli per gli esopianeti che possono essere usati per studiare i processi chimici delle loro atmosfere.

Il presente comunicato stampa dell’MPIA riassume i metodi del team per la misura delle biotracciature, compito svolto da Hegde lavorando con Lynn Rothschild e altri ricercatori dell’Ames della NASA :

Hegde, [Ivan] Paulino-Lima e [Ryan] Kent hanno misurato le firme biologiche dei campioni presso il Centro di Tecnologie Spaziali e Telerilevamento (CSTARS) presso l’Università della California, Davis. Hanno adoperato una struttura chiamata sfera di integrazione, cava e rivestita internamente di un materiale riflettente. Questa conteneva un foro per la sorgente luminosa, il campione del microorganismo, e un rilevatore per misurare l’impronta digitale della luce riflessa dal campione. L’effetto della forma sferica è il seguente: quando la luce attraversa il foro e si riflette sul campione, si distribuisce in modo uniforme in tutte le direzioni. Pertanto il rilevatore può essere posizionato in qualsiasi punto della sfera, contro qualsiasi parte della parete, e ancora misura la stessa media (“integrata”) di impronta. Questo è importante perché in un futuro prevedibile i telescopi saranno solo in grado di misurare la luce riflessa da un esopianeta che è stato valutata in media (“integrata”) su tutta la parte visibile della superficie del pianeta.” Lisa Kaltenegger, che dirige l’Institute for Pale Blue Dot della Cornell University, all’ampia gamma di possibilità di vita, inclusi gli organismi estremofili, che si trova nel database, dicendo che “… ci dà il primo assaggio di ciò che i diversi mondi là fuori potrebbero sembrare … Sulla Terra questi sono solo ambienti di nicchia, ma in altri mondi queste forme di vita potrebbero anche avere un ruolo dominante, e ora abbiamo un database per sapere come possiamo individuarlo”. La banca dati, che è aperta per il libero uso dei ricercatori di tutto il mondo, si trova presso l’Istituto. Ulteriori aggiunte al database sono attese in futuro, man mano che nuovi campioni saranno disponibili per catalogare spettri di indice di riflessione microbica.

traduzione di SIMONETTA ERCOLI

editing di DONATELLA LEVI

Further additions to the database are expected in the future as more samples become available to catalog microbial reflectance spectra. The paper is Hegde et al., Surface biosignatures of exo-Earths: Remote detection of extraterrestrial life,” in Proceedings of the National Academy of Sciences, published online before print March 16, 2015 (abstract available). The catalog is Surface biosignatures of exo-Earths, now available online.Original title of this postThe Colors of Extraterrestrial Life by Paul Gilster, published on March 17, 2015 on “Centauri Dreams”.

Annunci

9 dicembre 2015 Posted by | Astrofisica, Planetologia, Scienze dello Spazio | , , , , , , | 4 commenti

eso10 – I colori di un mondo che vive

Questo articolo è stato pubblicato da Centauri Dreams il 5 ottobre 2012. Tre anni non son pochi in un settore in tumultuoso sviluppo come quello degli esopianeti, e abbiamo dovuto riscrivere completamente il primo capoverso per evitare che l’articolo risultasse obsoleto. In un successivo post, che apparirà tra breve, incontreremo di nuovo i protagonisti di ieri e potremo apprezzare gli sviluppi del loro lavoro. (RF)

32549Gliese 581d sembrava sempre più essere considerato un pianeta della zona abitabile, come Siddharth Hegde  (studente per il dottorato in Astronomia all’Istituto Max Planck) e Lisa Kaltenegger (Harvard-Smithsonian Center for Astrophysics e direttore del Carl Sagan Institute) avevano spiegato in un nuovo saggio. Essi stavano concentrando la loro attenzione su come caratterizzare un pianeta extrasolare roccioso e puntavano su HD 85512b e Gliese 667Cc nonché su Gl581d come esempi, ma ipotizzavano anche che avremmo rilevato sempre più mondi nella zona abitabile man mano che il telescopio spaziale Kepler continuava il suo lavoro. Ma Kepler, ancor oggi il più famoso cercatore di esopianeti, per un guasto a un giroscopio avvenuto nel 2013, si trova ora impossibilitato a continuare la sua missione come era stata originariamente concepita.

Nella foto: Siddharth Hegde

In assenza di missioni quali Terrestrial Planet Finder della NASA o Darwin dell’ESA, che ci permetterebbero di analizzare l’atmosfera di un esopianeta con i biomarcatori, cos’altro possiamo fare per trovare i luoghi dove esiste la vita? Hegde e Kaltenegger concentrano la loro attenzione sul colore di un pianeta per trovare la risposta. Più precisamente sono interessati a ciò che è conosciuto come diagramma colore-colore, che sfrutta il fatto che un oggetto può essere osservato a diverse lunghezze d’onda, con una magnitudine diversa che si evidenzia in ciascuna banda osservata. ‘Colore’, in questo senso, si riferisce alla differenza di luminosità tra le diverse bande, facilmente tracciata su un diagramma colore-colore.

Lisa KlateneggerAnalizzare un esopianeta nella lunghezza d’onda del visibile in un diagramma colore-colore può rivelare qualche proprietà fisica di base del pianeta, supponendo che la copertura di nuvole non crei problemi. Il nuovo documento pone l’attenzione sui tipi di ambiente della Terra che possono dare supporto a forme estreme di vita e considera come potremmo identificare ambienti equivalenti su un esopianeta. Piccoli cambiamenti di temperatura, pH o altri fattori fisici o geochimici… possono far sì che questo tipo di ambienti siano dominanti in un esopianeta potenzialmente abitabile, fattore che potrebbe guidare l’evoluzione della vita. Questi vari ambienti “estremi” sulla superficie della Terra hanno albedo caratteristiche nella banda del visibile (0.4 µm – 0.9 µm) che potrebbero essere distinguibili da remoto. Pertanto, noi studiamo le impronte dei colori che si ottengono dagli ambienti superficiali abitati dalle specie estremofile così come mettiamo alla prova il nostro metodo utilizzando gli spettri di riflessione misurati per gli estremofili.

nella foto: Lisa Kaltenegger

Naturalmente, rilevare caratteristiche di superficie in uno spettro di riflessione non equivale di per sé a rilevare la vita e gli autori sono pronti a sottolineare che il loro metodo è una diagnosi che deve essere utilizzata in combinazione con uno studio dell’atmosfera dei pianeti extrasolari. Ma il documento è un interessante tentativo di mettere in parallelo le caratteristiche note degli ambienti abitati da estremofili con l’astronomia osservativa, riconoscendo che quando arriveremo al punto in cui potremo studiare i mondi rocciosi lontani attraverso immagini reali, lavoreremo a bassissima risoluzione, ai limiti dei nostri strumenti.

Tuttavia, c’è molto che possiamo fare per distinguere la percentuale di superficie coperta da acqua o vegetazione o deserto, un metodo che dovrebbe permetterci di dare la priorità ai pianeti extrasolari più adatti per la spettroscopia in follow-up. Il metodo si basa su studi precedenti del bordo rosso della vegetazione provocato dall’assorbimento nel vicino infrarosso dello spettro durante la fotosintesi, ma espande quel lavoro fino a prendere in considerazione diverse forme di vita che possono vivere sopra o sotto la superficie. Le Piezophilae, per esempio, prosperano sottoposte all’estrema pressione oceanica, mentre le Halophilae crescono in alte concentrazioni di sale.

spettro1Anche se alcuni organismi estremofili – licheni, colonie batteriche e alghe rosse – possono essere rilevati con misurazioni dirette dell’albedo, non avremmo modo di rilevare direttamente molte specie estremofile in uno spettro di riflessione. Possiamo fare un lavoro comunque utile: l’idea è quella di identificare il tipo di caratteristiche di superficie che sarebbero comuni negli ambienti che permettono al loro interno la vita ad organismi estremofili. E la gamma di superfici caratteristiche che possono essere rilevate da questi metodi è ampia: si va da acqua, neve e sale a sabbia, alghe rosse e alberi.

Ci sono moltissime componenti imprevedibili, tra cui il tipo di stella intorno a cui orbita il pianeta, che potrebbero avere un profondo effetto sull’impronta della vegetazione. Man mano che rileviamo pianeti rocciosi intorno a diverse classi di stelle, dovremo di conseguenza modificare i nostri metodi. Dall’articolo:

… L’impronta della clorofilla dei pianeti intorno a stelle calde, potrebbe avere un “bordo blu” per riflettere una parte della radiazione ad alta energia per impedire il surriscaldamento delle foglie… L’impronta della clorofilla dei pianeti in orbita attorno a stelle più fredde potrebbe apparire nera a causa dell’assorbimento totale di tutta l’energia nella banda del visibile tale per cui le piante ottengono tutta la luce possibile per il metabolismo fotosintetico … Pertanto, le posizioni di alberi, colonie microbiche e licheni [sul diagramma mostrato nell’articolo] sono valide solo per un pianeta simile alla Terra che orbiti intorno ad una stella simile al Sole e dovrebbero essere prese come elementi indicativi. L’albedo della vegetazione e degli organismi produttori di clorofilla in presenza stelle non simili al Sole richiede ulteriori studi.”

spettroIl documento di Hegde e Kaltenegger ci indica il primo tipo di lavoro che saremo in grado di eseguire su un pianeta extrasolare nella zona abitabile, una volta che saremo stati in grado di acquisire una sua immagine diretta. Lavorando con organismi estremofili, i ricercatori stabiliscono i limiti ambientali per la vita sul nostro stesso pianeta, base utile per i nostri primi esami in altri mondi di tipo terrestre. La fotometria di base nel visibile usata qui può fornire un primo passo per sondare questi pianeti identificandone i colori caratteristici, collegandoli a nicchie ambientali che permettono la vita. Dovremmo poi attendere che vengano lanciati nello spazio gli strumenti necessari per analizzare le atmosfere di obiettivi di alto valore.

ATTENZIONE: NOTIZIE DELL’ULTIMO MINUTO

Lettera aperta a Facebook

Avviso agli amministratori dei  Gruppi FB

 

Titolo originale: “Colors of a living world” by Paul Gilster, pubblicato il 5 ottobre 2012 su Centauri Dreams. Abbiamo consultato inoltre il documento denominato “Colors of Extreme ExoEarth Environments” in Astrobiology (preprint).

Traduzione di SIMONETTA ERCOLI

Editing DONATELLA LEVI

23 novembre 2015 Posted by | Astrofisica, Astronautica, Planetologia, Scienze dello Spazio, Senza categoria | , , | 4 commenti

CHE BATOSTA !

Asteroid-miningIl Tredicesimo Cavaliere incorre nell’ira funesta di Facebook e perde il più bello scoop della sua storia.

Ecco com’è andata.  

Giovedì 12 novembre alle ore 12:35, il blog pubblica un breve, emozionato comunicato stampa dal titolo: “E’ aperta la caccia agli asteroidi. Potremmo sbagliarci, ma non ci risulta che prima di quell’ora, in quel giorno, qualche altro organo di informazione in lingua italiana, di qualsiasi tipo, avesse già battuto l’importantissima notizia che segue.

Percepiti per anni solo come potenziali portatori di distruzione in caso di impatto con il nostro pianeta, gli asteroidi, oggetto del Space Launch Competitiveness Act approvato ieri dal Senato degli Stati Uniti con un convinto voto bipartisan, appaiono ora in una luce nettamente migliore – esordiva il comunicato stampa, che  chiudeva un paio di dozzine di righe dopo, così: – dal punto di vista minerario, l’insieme di asteroidi e comete che fa parte del Sistema Solare potrebbe valere qualcosa come cento trilioni di dollari  = $1014   E non si può negare che l’attuale livello tecnologico sia perfettamente in grado di sostenere questo nuovo sforzo. Il Congresso Americano l’ha capito e, a quasi cinquant’anni dall’Apollo 11, ha di fatto dato inizio all’Astronautica commerciale e privata

Il canale di diffusione più importante è costituito, per un microblog come il Tredicesimo Cavaliere, dalla rete dei Gruppi di discussione Facebook che raccolgono migliaia di astrofili. L’insieme dei Gruppi Facebook, degli astrofili e dei blog costituisce di fatto una microeconomia virtuosa, dove ognuno ha i suoi doveri e ottiene il suo tornaconto. Facebook fornisce la piattaforma tecnologica su cui si basa il servizio; gli astrofili forniscono lettori ai blog e a FB un pubblico per le campagne pubblicitarie, e, come si è detto, i blog forniscono info e contenuti ad astrofili e Gruppi FB. E’ andata avanti così per anni, con soddisfazione di tutte e tre le parti .

Ma giovedì 12 novembre, Facebook ha posto fine a questa proficua collaborazione con un gesto brutale e senza preavviso, sanzionando l’account FB di chi vi scrive, per 15 giorni, con il blocco della possibilita’ di scrivere e pubblicare nei Gruppi e con la cancellazione degli inviti alla lettura del comunicato stampa di cui sopra. A tutt’ora non mi è stata nemmeno comunicata una motivazione ufficiale.

Ammmesso ma non concesso che io abbia involontarialemte scritto o fatto qualcosa di sindacabile, cosa che comunque nego nel modo più assoluto, nel buio totale in cui mi hanno lasciato posso solo azzardare che FB voglia rifarsi al testo seguente: Le normative di Facebook prevedono che venga messa fine ai comportamenti che potrebbero essere considerati fastidiosi od offensivi dalle altre persone. Abbiamo appurato che hai utilizzato una funzione in un modo che potrebbe essere considerato improprio, anche se non era tua intenzione“. Ma, ripeto, non c’è stato ancora niente di ufficiale.

Ricostruiremo la nostra rete di lettori, servendoci di altri media, che sul web non mancano di certo. Saremo presenti su Twitter, Yahoo e sulle Cerchie di Google, e altri ancora. E non rinunceremo neanche a Facebook, che, al di là dell’arroganza e del senso di onnipotenza che pervade i suoi burocrati, ha pur sempre grandi meriti.

Cosa possono fare i nostri lettori, i nostri amici , e chi apprezza il nostro lavoro?

MOLTISSIMO !

Prima di tutto farsi vivi, aiutarci a diventare più forti condividendo questa pagina e abbonandosi al Tredicesimo Cavaliere (naturalmente è gratuito). Al momento potete farlo solo tramite nostra pagina Facebook, che è ancora disponibile e non credo verrà minacciata. Ma, meglio ancora, se non lo avete già fatto, registratevi anche come utenti diretti di WordPress, il nostro editore:

https://iltredicesimocavaliere.wordpress.com

Tra breve avremo una presenza su Twitter, Yahoo, Google e quant’altro. Ma il lavoro è tantissimo e noi siamo pochi. Perciò la cosa più utile e apprezzata sarà poter disporre di un poco del vostro tempo per un aiuto sul campo, tanto meglio se avete competenze specifiche nel settore dell’editoria sul web.

Inutile dire che chi può aiutarci di più sono proprio gli astrofili e gli appassionati di fantascienza che fin qui ci hanno seguito tramite i Gruppi di Facebook. In teoria si potrebbe tentare anche subito di recuperare quei lettori ristrutturando i rapporti tra noi e i Gruppi su una base diversa e inattaccabile dalla burocrazia di FB. 

A prestissimo, rimanete sintonizzati !

Roberto Flaibani

16 novembre 2015 Posted by | Astrofisica, Astronautica, News, Planetologia, Scienze dello Spazio | , , , , , | 1 commento

E’ aperta la caccia agli asteroidi

Asteroid-miningPercepiti per anni solo come potenziali portatori di distruzione in caso di impatto con il nostro pianeta, gli asteroidi, oggetto del Space Launch Competitiveness Act approvato ieri dal Senato degli Stati Uniti con un convinto voto bipartisan, appaiono ora in una luce nettamente migliore. Si tratta dei rimasugli del processo di formazione del Sistema Solare, milioni di piccoli o grandi pezzi di roccia, minerali vari e acqua sparsi in tutto il Sistema e aggregatisi nel corso del tempo in gruppi e famiglie. Contengono un po’ di tutto, anche minerali preziosi, “terre rare” e perfino elementi non presenti sul nostro pianeta, che potrebbero essere quindi vantaggiosamente importati. Ma probabilmente ciò che di più prezioso troveremo negli asteroidi (e nelle comete!) sarà la semplice acqua. Scomposta nei suoi elementi base , sarà conservata in depositi orbitali e offerta come propellente da usare nel corso delle missioni, mentre oggi deve anch’esso essere trasportato da Terra, riducendo assai il carico utile offerto dal razzo lanciatore.

Tra guadagni e risparmi, le cifre si fanno titaniche: dal punto di vista minerario, l’insieme di asteroidi e comete che fanno parte del Sistema Solare potrebbe valere qualcosa come cento triliardi di dollari. E’ solo una stima che nessuno si sente di confermare, in presenza delle scarse informazioni geologiche ottenute fino ad oggi. E si avvertono nella normativa vigente problemi di politica internazionale, di natura legale e perfino assicurativa. Ma non si può negare che l’attuale livello tecnologico è perfettamente in grado di supportare questo nuovo sforzo. Il Congresso Americano l’ha capito e, in una festa di voti repubblicani e democratici mescolati all’entusiasmo degli imprenditori del settore (Musk, Branson, Bigelow, eccetera), a quasi cinquant’anni dall’Apollo 11, ha di fatto dato inizio all’Astronautica commerciale e privata con parole che in estrema sintesi suonano così:

“Sei capace di prenderlo? Allora fallo, è tuo.”

 

ROBERTO FLAIBANI

12 novembre 2015 Posted by | Astrofisica, Astronautica, Difesa Planetaria, News, Planetologia, Senza categoria | , | 1 commento

eso9. Esopianeti: dove porta la via numerologica?

No, no, niente panico: non siamo passati al Lato Oscuro, le nostre simpatie vanno ancora tutte al metodo scientifico, alla razionalità, alla laicità. Il fatto che da un articolo su Halloween (nello spazio) si sia passati ad un altro che puzza un po’ di magia (la “legge” Titius-Bode) non significa affatto che la prossima settimana avremo saltato il fosso e mollato il SETI per darci all’avvistamento di salsicciotti volanti. Ma pur rimanendo fedeli alla causa della Scienza, il fatto è che questa vecchia legge empirica dimenticata da tutti, oggi è ritornata di interesse per la scoperta dei pianeti extrasolari, nuovi e unici giudici per questa “relazione aritmetica non falsicabile”. Proprio quando si sembrava arrivati all’ultimo atto, ecco il colpo di scena! (RF)

TAB TBLa cosidetta “Legge di Titius – Bode”, è sempre stata considerata una curiosità, qualcosa dipendente dal caso, o poco più. Ma recentemente questa bizzarria numerologica, che predice l’apparire dei pianeti in un sistema planetario con un certo rapporto tra i loro periodi orbitali, è stata oggetto di una nuova ricerca. (la tabella mostra i valori forniti dalla Titius – Bode quando applicata al Sistema Solare n.d.t.). François Graner (Ecole Normale Superieure, Paris) e Bérangere Dubrulle (Observatoire Midi Pyrenees, Toulouse) hanno rivisitato la Titius – Bode negli anni ’90, chiedendosi se si erano effettivamente registrate quelle proprietà simmetriche che la maggior parte dei sistemi planetari dovrebbe esibire.

 

Titius(nell’immagine Johann Titius)

E ora il lavoro in corso all’Università Nazionale Australiana e all’Università di Copenhagen ha fornito predizioni utilizzando una versione modificata della legge che può essere messa alla prova osservando i sistemi esoplanetari conosciuti. Così noi abbiamo bisogno di rinfrescare i nostri ricordi della formulazione che ci mostra una predizione relativa ad alcune orbite planetarie. Prendi una sequenza numerica dove ogni numero sia doppio del precedente, cioè 0, 3, 6, 12 e così via. Aggiungi 4 ad ognuno dei numeri e poi dividili per 10. Se esamini il Sistema Solare prendendo come unità di misura l’Unità Astronomica, i pianeti seguono la sequenza sotto molti aspetti. Ci è voluta la mancanza di un pianeta in quella che è chiamata oggi La Cintura Principale degli Asteroidi per indurre Johann Bode a suggerire che un pianeta avrebbe dovuto effettivamete apparire a 2,8 AU tra Marte e Giove, proprio dove successivamente è stato individuato il pianeta nano Cerere. La cosiddetta legge Titius-Bode, sviluppata nel diciottesimo secolo da Johann Titius, e in seguito analizzata da Johann Elert Bode, aveva guadagnato terreno nel 1781, quando il pianeta Urano fu trovato a 19,2 AU anziché 19,6. Purtroppo Nettuno fu rilevato a 30,8 AU invece che 38,8, come predetto dalla Titius – Bode, e Plutone alla distanza media di 40 AU invece di 77,2 (segue un’orbita fortemente ellittica n.d.t.).

 

Bode(nell’immagine, Johann Bode).

Esiste qualche versione della relazione Titius-Bode che può ancora aiutarci nel nostro lavoro con gli esopianeti? Steffen Kjær Jacobsen (Niels Bohr Institute, Copenhagen) e i suoi colleghi ricercatori Charles Lineweaver e Timothy Bovaird (gli ultimi due all’ ANU) si sono chiesti se una forma modificata della Titius – Bode potesse essere in qualche modo utile nel prevedere le orbite dei pianeti. Mentre sviluppano il lavoro presentato per la prima volta in un documento del 2013 dedicato a tale argomento, gli autori credono effettivamente che i risultati possano essere incrociati con dati già esistenti. Dice Jacobsen:

Abbiamo deciso di adottare questo metodo per calcolare le posizioni planetarie potenziali in 151 sistemi planetari, dove il telescopio spaziale Kepler aveva trovato da 3 a 6 pianeti. In 124 sistemi, i risultati previsti con la Titius – Bode combaciavano con le reali posizioni dei pianeti tanto quanto lo facevano nel nostro stesso sistema planetario, o anche di più. Ma usando la Titius – Bode tentavamo di prevedere dove avrebbero potuto esserci più pianeti nelle zone esterne dei sistemi planetari. Noi però avevamo fatto i calcoli solo per pianeti che avevano buone probabilità di essere visti col telescopio spaziale Kepler.

 

eso9 tabella

Immagine : Sistemi di pianeti extrasolari dove i pianeti già noti sono contrassegnati con puntini blu , mentre i punti rossi indicano i pianeti previsti dalla legge di Titius – Bode sulla composizione dei sistemi planetari . 124 sistemi planetari nel sondaggio – in base ai dati del satellite Kepler , si adattano con questa formula . (Credit : Timothy Bovaird et al , 2015)

 

Nel loro articolo sul Monthly Notices of the Royal Astronomical Society, il team spiega di aver preso i 27 sistemi planetari che non soddisfacevano i requisiti della Titius-Bode e di aver aggiunto dei pianeti laddove questa prevedeva che si sarebbero trovati. Con l’aggiunta di questi pianeti a quelli già noti, il loro lavoro ha previsto un totale di 228 pianeti nei 151 sistemi planetari. Da questo il team ha ricavato una lista di priorità di 77 pianeti in 40 sistemi.

Vesta Ceres DawnI ricercatori suggeriscono di cercare questi pianeti  nella banca dati di Kepler, un’opportunità per falsificare le previsioni della Titius-Bode attingendo ad archivi di dati già esistenti. Questo lavoro segue la precedente indagine, fatta dai due coautori Bovaird e Lineweaver, sulle possibilità di applicare la Titius-Bode agli esopianeti, che prevedeva nel 2013 l’esistenza di 141 nuovi esopianeti in 68 sistemi. L’anno successivo Changcheng Huang e Gaspar Bakos eseguirono una ricerca sui dati di Kepler per 97 dei pianeti così previsti, concludendo con la conferma di cinque di essi. L’attuale documento puntualizza ulteriormente la metodologia dell’articolo del 2013, così come precisato qui sotto:

In questo lavoro, eseguiamo una migliore valutazione della TB [Titius-Bode] su un campione più ampio dei sistemi multi-planetari di Kepler per ottenere nuove previsioni sul periodo orbitale degli esopianeti. Diamo per acquisito che all’interno dei sistemi multi-planetari viga un alto grado di complanarità, e he venga usato per ottenere la stima più probabile dell’inclinazione del piano invariabile di ciascun sistema. Poi mettiamo in ordine di priorità le nostre previsioni originali e le nuove basate sulla TB secondo la loro probabilità geometrica di transito. Il confronto delle nostre previsioni originali con le conferme ottenute con il sistema HB14 [il testo Huang / Bakos] dimostra che, limitando le nostre previsioni a quelle con un’alta probabilità geometrica di transito, il tasso di rilevamento dovrebbe aumentare di circa 3 volte.

bodes_moonsSe le previsioni della Titius-Bode dovessero reggere, dovrebbero esistere da 1 a 3 pianeti nella zona abitabile di ciascuno dei sistemi. Il team ha condotto un ulteriore studio sui 31 sistemi fra i 151 studiati in cui sono stati trovati pianeti vicino alla zona abitabile, constatando che ci dovrebbe essere in questa una media di due pianeti. Se le implicazioni della Titius-Bode sono sostanzialmente vere, allora esiste un potenziale di miliardi di stelle con pianeti attraverso le zone abitabili di tutta la galassia, una constatazione che potrebbe essere supportata da una successiva analisi dell’archivio dati di Kepler e da altri futuri lavori.

TRADUZIONE A  CURA DELLA

REDAZIONE DEL TREDICESIMO CAVALIERE

Titolo originale: Find exoplanets using the Titius – Bode Relation? by Paul Gilster, viene pubblicato per la prima volta su Centauri Dreams il 18 marzo 2015. Credis to Wikipedia.

FONTI

The paper is Bovaird, Lineweaver and Jacobsen, “Using the inclinations of Kepler systems to prioritize new Titius–Bode-based exoplanet predictions,” Monthly Notices of the Royal Astronomical Society Vol. 448, Issue 4, pp. 3608-3627 (abstract). The 2013 paper is Bovaird and Lineweaver, “Exoplanet predictions based on the generalized Titius–Bode relation,” MNRAS Vol. 435, Issue 2, pp. 1126-1138 (abstract). The Huang/Bakos paper is “Testing the Titius–Bode law predictions for Kepler multiplanet systems,” MNRAS Vol. 442, Issue 1, pp. 674-681 (abstract).

3 novembre 2015 Posted by | Astrofisica, Planetologia, Scienze dello Spazio | , , | Lascia un commento

Space Halloween

space-halloween-astronomitaly-evento-mg4j80m6ylqb8ecqk07e9fmhk1ry9rjhe5lxckieb0

Il prossimo Halloween potrebbe essere una buona occasione per fare conoscenza con Astronomitaly, un’iniziativa nata dalla passione di alcuni amici per l’osservazione delle stelle. Con l’evocativo titolo “Space Halloween, orrori dallo spazio“, l’associazione presenta così il suo evento su Facebook: stelle defunte, esplosioni devastanti, scheletri cosmici, è una notte per osservare la Luna e le stelle e scoprire gli orrori dello spazio!

Guidati dal nostro staff osserveremo la Luna e scopriremo la sua storia terrificante, punteremo i nostri telescopi verso le stelle e racconteremo del loro trapasso cosmico assieme ad altre storie orripilanti dell’Universo. Porta con te il tuo smartphone e scatta incredibili fotografie della Luna dai nostri telescopi! Non sono più rassicuranti sul loro sito quando affermano che, se avete paura del buio, l’Universo non è un posto adatto a voi. È un luogo di estrema oscurità, lontano dalle luci confortanti di una casa. L’Universo è uno spazio immenso e silenzioso dominato dalle tenebre. Se questo non fosse sufficiente a spaventarvi, sappiate che è anche popolato da presenze terrificanti. Mentre sulla Terra zombi, vampiri e fantasmi escono fuori solo per Halloween, mostri d‘altro genere si aggirano costantemente sopra le nostre teste”.

HAL1Così il lettore apprende che esistono anche le stelle zombie, descritte in questo modo: Sono alcune stelle che tornano in vita in modo violento e drammatico. Gli astronomi le chiamano stelle zombi, supernove di “tipo Lax”, esplosioni enormi e potenti che proiettano materia stellare tutto intorno a se nell’Universo. Le supernove di questo tipo esplodono in sistemi binari che contengono almeno una nana bianca, una piccola stella super densa che ha cessato le reazioni di fusione nucleare. Le nane bianche sono “morte”, ma non necessariamente rimangono tali in un sistema binario. Possono tornare in vita, anche se brevemente, con la gigantesca esplosione di una supernova, traendo materiale dalle stelle compagne o attraverso la fusione con esse”. 

halloween-3O le stelle vampiro che proprio come i “veri” vampiri, alcune stelle si mantengono giovani succhiando la forza vitale da sventurate vittime. A causa dell’attitudine del cervello umano a ricondurre immagini casuali a oggetti noti, capita di osservare nel firmamento anche schiamazzi di streghe, teschi incandescenti e occhi giganti che ci guardano a loro volta. Formate da gas incandescenti e polveri sono chiamate nebulose e sono sparse per tutto l’Universo.

Ghost-Cloud-m9wctywituit439nc2cj1osuqz46xdieo4sthm8mb0Che dire della reale minaccia rappresentata dagli asteroidi? Gli esperti affermano che l’impatto con una roccia spaziale del diametro medio superiore a un km può spazzare via l’intera civiltà umana. E anche asteroidi che misurano appena 50 metri possono infliggere gravi danni e perdite umane se colpiscono nei pressi di un centro abitato. L’impatto con un asteroide è, con tutta probabilità ciò che, milioni di anni fa, ha spazzato via dalla Terra i dinosauri creando spazio per animali più piccoli e versatili, i mammiferi. 

Astronomitaly, con questa sua iniziativa del 31 ottobre prossimo, sembra volerci dire che comunque, al di là della sua bellezza, il cielo stellato va tenuto d’occhio. E quali migliori guide di alcuni appassionati che forniscono agli intervenuti anche gli strumenti per l’osservazione? Astronomitaly, infatti, non si limita a lanciare l’iniziativa per Halloween, ma propone dei percorsi in tutta Italia che condurranno i partecipanti nei luoghi dovè migliore l’osservazione delle stelle. A questo scopo, l’associazione ha ideato la certificazione “I cieli più belli d’Italia” che identifica i migliori luoghi da dove gli astrofili possono operare.

Questo riconoscimento viene assegnato alle location che godono di un cielo stellato di qualità o che, in un percorso di qualificazione e miglioramento, desiderano valorizzarlo offrendo esperienze e servizi dedicati all’Astroturismo.

 GIANVITTORIO FEDELE

 

(Si ringraziano la Nasa e Astronomitaly per l’uso delle fotografie)

27 ottobre 2015 Posted by | Astrofisica, Difesa Planetaria, News, Planetologia, Scienze dello Spazio | , , , , | 1 commento

INDIA2 – Il programma spaziale indiano guarda lontano.

Il 28 Settembre 2015, la missione PSLV-C30 dell’Indian Space Research Organisation’s (ISRO), cioè l’agenzia Indiana per le ricerche spaziali, ha messo in orbita con successo sette satelliti nello spazio. Questa missione è significativa per diverse ragioni:

  • il suo carico utile principale era un satellite denominato ASTROSAT, il primo osservatorio astronomico indiano a studiare gli oggetti celesti lontani. ASTROSAT può essere considerata la prima missione indiana a scopo interamente scientifico, mentre per molti anni il programma spaziale dell’ISRO è stato orientato principalmente alle applicazioni

  • questo era il trentesimo lancio consecutivo positivo del Polar Satellite Launch Vehicle (PSLV), un razzo che ha già lanciato nello spazio 84 satelliti

  • a bordo c’erano altri sei satelliti: uno indonesiano, uno canadese e quattro nano-satelliti statunitensi. Mettendo questi sei satelliti in orbita, l’India ha ora lanciato 51 satelliti per conto di altre nazioni. Pur essendoci una lunga storia di collaborazioni in ambito spaziale tra l’India e gli Stati Uniti, questa è la prima volta che un’organizzazione americana ha utilizzato un razzo indiano per lanciare i propri satelliti

  • negli ultimi anni ISRO è stata in grado di lanciare una media di due o tre razzi l’anno. PSLV-C30 è il quarto lancio effettuato dall’ISRO nel 2015, e sono ancora previsti uno o due lanci nei prossimi tre mesi

  • Infine, in questa missione era presente una maggiore partecipazione dell’industria indiana. Secondo l’ISRO, per questa missione l’industria ha contribuito quasi il 70% del veicolo, particolarmente nel settore componentistico. Inoltre, l’industria spaziale indiana è stata in grado di soddisfare la difficile tabella di marcia dell’ISRO

astrosat1La vera stella di questa missione è però ASTROSAT. Questo satellite, dal peso di 1.513 chilogrammi, è stato immesso in orbita a un’altitudine di 650 chilometri con un’inclinazione di sei gradi. Il satellite sarà in grado di fare osservazioni dell’universo alla luce visibili, agli ultravioletti e ai raggi X ad alta e bassa energia. La missione ha una durata prevista di 5 anni, e ha cinque strumenti a bordo per studiare vari processi astrofisici. L’ISRO ha progettato questi carichi in collaborazione con varie agenzie spaziali indiane che fanno ricerca nel settore astrofisico. Per alcuni carichi i partner sono stati l’Agenzia Spaziale Canadese e l’Università di Leicester del Regno Unito, che hanno realizzato la camera CCD installata sul Soft X-ray Telescope (SXT) in grado di captare i raggi X deboli.

Secondo l’ISRO, “gli obiettivi scientifici della missione ASTROSAT sono la comprensione dei processi ad alta energia nei sistemi stellari binari con stelle di neutroni e buchi neri, stimare i campi magnetici delle stelle di neutroni, studiare le regioni dove nascono le stelle e i processi ad alta energia nei sistemi stellari oltre la nostra galassia. Compito della missione è anche rilevare nuove sorgenti di raggi X ed effettuare un’indagine limitata a campo profondo dell’universo agli ultravioletti”.

astrosat2L’ISRO ha cominciato il suo viaggio nello spazio con dei satelliti multifunzione, con strumentazionei essenzialmente nei settori meteorologico e delle comunicazioni. Per molti anni l’ISRO si è concentrata sullo sviluppo dell’osservazione terrestre e sui satelliti per il telerilevamento. Più di recente l’India ha fatto degli investimenti significativi nei sistemi di navigazione basati nello spazio. Le missioni verso la Luna e Marte avevano fondamentalmente l’obiettivo di una dimostrazione di capacità tecnologiche. ASTROSAT può essere dunque considerato la prima missione indiana a scopo esclusivamente scientifico. Questo satellite è il primo osservatorio indiano concepito per studi simultanei a multi frequenza in grado di fornire una comprensione complessiva dell’universo. Il costo stimato di ASTROSAT è di circa 24 milioni di Euro.

astrosat4Ci sono molti altri osservatori spaziali lanciati in passato, come il Rossi X-ray Timing Explorer, il Chandra X-ray Observatory, XMM-Newton, Galex, FUSE, and Suzaku. Queste missioni hanno delle capacità a banda stretta, o nelle regioni ai raggi X o agli ultravioletti, mentre ASTROSAT ha capacità di osservazione a banda larga in entrambe le regioni. La missione si concentra sull’imaging ultravioletto ad alta risoluzione per lo studio morfologico degli oggetti galattici e ultragalattici, studi a banda larga di fonti di emissione a raggi X e altri obiettivi con diverse lunghezze d’onda, dalle stelle più vicine ai nuclei galattici attivi più distanti.

Per sviluppare questo satellite astronomico è stato necessario molto più tempo del previsto. Il progetto è iniziato nel 2004, ma per gli scienziati è stato molto complesso sviluppare i vari strumenti scientifici della missione. Ci sono voluti 11 anni per creare l’SXT. Questo telescopio necessita di 320 specchi di alluminio, che sono progettati con enorme precisione e hanno un sottile rivestimento d’oro. Questi specchi sono disposti come gusci concentrici, con dei montanti per fissarli. La precisione del loro posizionamento è di 20 micron, vale a dire uno spessore inferiore a quello di un capello umano. Secondo gli scienziati coinvolti nel progetto, soltanto mettere a punto questi specchi è costato tre anni di lavoro. Questo carico è stato sviluppato dal Tata Institute of Fundamental Research (TIFR) di Mumbai, India, e l’Università of Leicester. Il lancio del satellite era originariamente previsto per il 2010, ma per una serie di ragioni è stato poi procrastinato.

astrosat3L’India ha lanciato il suo primo satellite nel 1975, chiamandolo Aryabhata, dal nome di un astronomo indiano. Questo satellite doveva svolgere specifici esperimenti scientifici che coinvolgevano un’astronomia a raggi X e il rilevamento di neutroni ad alta energia e raggi gamma dal sole, più altri oggetti come carico pagante. Benché l’avventura spaziale indiana sia cominciata con un approccio scientifico, non continuò allo stesso modo, concentrandosi invece negli ultimi quarant’anni su programmi orientati all’applicazione. L’India investì nel settore spaziale essenzialmente a scopo di sviluppo socio-economico. L’ISRO lanciò satelliti principalmente per il telerilevamento, le comunicazioni, la meteorologia e la navigazione. L’unica eccezione furono le sue missioni sulla Luna e su Marte. In qualche caso limitato alcuni satelliti indiani trasportarono alcuni carichi paganti aventi scopo scientifico. GSAT-2 (lanciato nel maggio 2003) portava quattro carichi utili sperimentali, inclusi un RADOM (radiation dose monitor) e uno spettrometro a raggi X. Anche un satellite denominato YouthSat, una missione congiunta di studenti universitari indiani e russi, aveva strumenti scientifici per osservare le eruzioni solare e studiarne l’impatto sulla nostra atmosfera.

L’India viene talvolta criticata per il fatto di intraprendere missioni con una massa di carico utile scientifico molto limitata. Ad esempio il carico scientifico della missione lunare Chandrayaan-1 Moon aveva una massa totale di 90 chilogrammi e 11 strumenti, mentre la missione Marte portava solo cinque sensori per un peso complessivo di 15 chilogrammi. L’ISRO non è in grado di lanciare veicoli più pesanti date le limitazioni inerenti al razzo PSLV, ma per missioni su un’orbita bassa come ASTROSAT il PSLV è in grado di sollevare carichi molto più pesanti

astrosat5ASTROSAT non ha un significato solo per l’astronomia, ma indica che l’India è ora pronta a sviluppare delle missioni con satelliti a finalità puramente scientifica. Fino ad ora l’India non era pronta per investire sulle missioni scientifiche. Durante gli ultimi quarant’anni l’India ha fatto progressi significativi in molti campi scientifici. Ora, dopo aver dedicato sufficienti investimenti verso lo sviluppo di risorse tecnologiche volte a soddisfare le necessità di servizi sociali, l’India sembra pronta a investire nelle missioni scientifiche pure. L’India non dovrebbe avere più timore delle critiche sia interne che internazionali relative al conflitto tra gli investimenti aventi per fine la ricerca scientifica e quelli contro la povertà. In realtà, investire in modo intelligente nella tecnologia favorisce la prosperità. Sono gli investimenti nella scienza che possono poi risultare in un maggiore sviluppo tecnologico, pertanto l’ISRO dovrebbe investire ancora di più nelle missioni scientifiche.

Titolo originale: “India’s space program looks outwards” di Ajey Lele, pubblicato su The Space Review il 5 ottobre 2015. Il Dr. Lele lavora presso l’Institute for Defence Studies and Analyses (IDSA) un centro studi con sede a New Delhi specializzato su problemi relativi alla sicurezza. Ha ricevuto inoltre il dottorato di ricerca in Fisica e quello in relazioni internazionali. Le sue ricerche si concentrano su argomenti relativi alle tecnologie delle armi strategiche di distruzione di massa. A suo credito può vantare inoltre una intensa attività come pubblicista.

traduzione di DONATELLA LEVI

editing ROBERTO FLAIBANI

21 ottobre 2015 Posted by | Astrofisica, Astronautica, News, Scienze dello Spazio | , , , | Lascia un commento

eso8. Fondare colonie

 Abbiamo voluto riproporre con la sigla eso, che contraddistingue gli interventi dedicati agli esopianeti, questo articolo apparso sulle nostre pagine ormai un paio di anni fa. Anche se gli eccessi e i fraintendimenti nell’uso del termine abitabilità continuano, anzi dopo il ritrovamento di tracce d’acqua sulla superficie di Marte ormai dilagano, concetti alternativi come colonizzabilità e demandite rimangono molto interessanti, e questo articolo, che ne parla, mantiene intatto il suo valore. (RF)

 eso8 MarsOneLe sonde dedicate alla ricerca degli esopianeti continuano a fornire risultati interessanti. Sappiamo ora che la maggior parte delle stelle possiede sistemi planetari, e che una sorprendente percentuale di questi sarà costituita da pianeti delle dimensioni della Terra, situati nella loro zona di abitabilità, cioè la regione in cui non fa né troppo caldo né troppo freddo, e la vita come noi la conosciamo può svilupparsi. Gli astronomi sono completamente affascinati dal concetto di zona di abitabilità e da quello che potrebbero trovare. Abbiamo l’opportunità, nell’arco della nostra esistenza, di scoprire se la vita esiste fuori dal nostro sistema solare e forse quanto essa è comune. Abbiamo anche un’altra opportunità , meno frequentata dagli astronomi ma comune tra gli scrittori di fantascienza. Per la prima volta nella storia, possiamo essere in grado di identificare mondi dove potremmo trasferirci e vivere. Nel momento in cui decidiamo di riflettere sulla seconda possibilità, è importante tenere bene in mente che abitabile e colonizzabile non sono sinonimi.

Nessuno sembra accorgersene, ma non è possibile trovare alcun termine se non “abitabilità “ per descrivere gli esopianeti che stiamo trovando. Che un pianeta sia abitabile, in accordo con la definizione corrente del termine, non ha niente a che vedere con la possibilità che degli esseri umani si stabiliscano in quel luogo. Cosi il termine si applica a luoghi che sono di importanza vitale per la scienza ma non si applica necessariamente a luoghi dove noi vorremmo effettivamente andare. In altre parole il fatto che un pianeta sia abitabile (secondo l’attuale definizione) non ha niente a che fare con l’eventuale fondazione di una colonia.

eso8 supeterraLa differenza tra abitabile e colonizzabile

Rivolgiamo la nostra attenzione verso due pianeti molto diversi tra loro: Gliese 581g e Alpha Centauri Bb. Non abbiamo conferma dell’esistenza di nessuno dei due ma abbiamo abbastanza dati per poter dire a che cosa assomigliebbero se la loro esistenza venisse confermata.

Gliese 581g è una super-terra che orbita nel mezzo della zona di abitabilità della sua stella, ciò significa acqua liquida che scorre liberamente in superficie e lo rende un mondo abitabile secondo l’attuale definizione.

Centauri Bb, al contrario, orbita molto vicino alla sua stella e la sua temperatura in superficie è probalbilmente abbastanza alta da rendere uno dei suoi emisferi un mare di magma (il pianeta è collegato alla sua stella da un sistema di maree come la Luna lo è alla Terra). Alpha Centauri Bb viene considerato dai più non abitabile. Gliese 581g è abitabile e Centauri Bb non lo è ; ma ciò significa forse che il primo è più colonizzabile del secondo? In effetti non lo è. Dato che Gliese 581g è una super-terra, ovviamente la gravità in superficie sarà maggiore che sulla Terra. Le stime variano ma si arriva anche a ippotizzare una forza di gravità pari a 1,7g, come dire che un uomo di 78 chili ne peserà oltre 125 su Gliese 581g. Se il nostro uomo convertisse tutto il suo attuale grasso corporeo in massa muscolare potrebbe essere in grado di andare in giro senza usare supporti ortopedici per la deambulazione, se non proprio una sedia rotelle. Comunque il suo sistema cardiovascolare sarebbe sottoposto a uno sforzo permanente e  non ci sarebbe modo di rendere il suo habitat più confortevole.

eso8 - base minerariaAll’opposto, Centauri Bb è circa delle stesse dimensioni della Terra, e la gravità in superficie è probabilmente la stessa. Siccome si trova in risonanza mareale con il suo sole, un emisfero è sicuramente ricoperto da un mare di lava, ma l’altro emisfero, quello permanentamente in ombra, sarà più freddo, potenzialmente molto più freddo. È probabile che non ci sia nemeno un soffio di atmosfera, né acqua liquida, ma come posto dove costruire un avanposto non sarebbe da buttar via. Bisogna considerare anche che spostare materiali dalla superficie all’orbita bassa sarebbe più facile nel caso di Centauri Bb, mentre l’atmosfera presumibilmente spessa di Gliese 581g renderebbe più difficile la soppravivenza degli esseri umani. Senza dubbio Gliese è un buon candidato per lo sviluppo della vita, ma secondo me Centauri Bb è un candidato migliore per ospitare una colonia.

 Definizione di colonizzabilità

 Abbiamo una definizione molto buona di cosa rende abitabile un pianeta: una temperatura stabile, atta alla formazione di acqua liquida in superficie. È possibile sviluppare una definizione di colonizzabilità per un pianeta, egualmente o più soddisfacente. Come prima cosa un mondo colonizzabile deve avere una superficie accessibile. Una super-terra con un’atmosfera incredibilmente spessa e una gravità di superficie di 3 o 4g è del tutto non colonizzabile, sebbene vi si possa trovare abbondanza di vita.

eso8 exocity1 In secondo luogo, gli elementi giusti devono essere accessibili sul pianeta perchè esso sia colonizzabile. A prima vista sembra un po’ sconcertante, ma che succederebbe se Centauri Bb fosse l’unico pianeta nel suo sistema, e ci fossero solo tracce di azoto? Non è un problema di quantità, un pianeta come quello (in un sistema stellare come quello) non potrebbe dare supporto a una colonia di forme di vita terrestre. L’azoto, anche solo tracce di esso, è un componente critico della vita biologica.

 In un articolo intitolato The Age of Substitutibility, pubblicato su Science nel 1978, H.E. Goeller e A.M. Weinberg hanno proposto un minerale artificiale chiamato Demandite. Si presenta in due forme. Una molecola di Demandite industriale conterrà tutti gli elementi necessari per una industria edile e manifatturiera nelle proporzioni che uno otterrebbe se prendesse, diciamo, una città di media dimensione e la riducesse in polvere finissima. Ci sono 20 elementi nella Demandit industriale, incluso carbonio, ferro, sodio, cloro, ecc…

All’opposto, la Demandite biologica è composta quasi interamente di solo 6 elementi: indrogeno, ossigeno, carbonio, azoto, forforo e zolfo. (Se un intero sistema ecologico venisse macinato e si osservassero le proporzioni di questi elementi, potresti in realtà scoprire che esiste una singola molecola con le esatte proporzioni richieste: si chiama cellulosa).

 eso8 exocity2Terzo, in superficie deve esserci un flusso di energia in qualche modo gestibile. Il posto può essere tanto rovente che ghiacciato, ma deve essere possibile per noi muovere liberamente il calore. Di sicuro questo non è fattibile sulla superficie di Venere, che, con i suoi 800 gradi di temperatura obbligherebbe il vostro sistema di aria condizionata a un demenziale super lavoro solo per superare l’inerzia termica. L’accesso a un gradiente termico o energetico è quello che rende possibile il lavoro fisico. Ovviamente cose come la pressione superficiale, l’intensità stellare, la distanza della Terra giocano una grande parte, questi sono i tre fattori più importanti che io posso vedere. Dovrebbe essere ovvio all’istante che essi non hanno nessun rapporto con la distanza dei pianeti dal loro sole. Non c’è una “zona colonizzabile” come invece esiste una “zona abitabile”. Bisogna osservare la situazione pianeta per pianeta.

Si noti che, secondo queste definizioni, Marte è solo marginalmente colonizzabile. Perchè? Non a causa della sua temperatura o della bassa pressione atmosferica, ma perchè è scarsamente dotato di azoto, almeno in superficie. Una combinazione di Marte e Ceres potrebbe essere qualcosa di colonizzabile, se Ceres avesse una buona scorta di azoto nella sua borsetta del trucco, e questa idea di ambienti combinati in attesa di colonizzazione complicava la visione d’insieme. Probabilmente non siamo in grado di rilevare un oggetto delle dimensioni di Ceres, se orbitasse intorno ad Alpha Centauri. Cosi la lunga distanza che ci separa da un pianeta candidato alla colonizzazione difficilmente potrebbe esere considerata come un elemento a sfavore. Al contrario, se possiamo rilevare la presenza di tutti gli elementi necessari per la vita e per l’industrializzazione in un pianeta all’incirca di dimensioni terrestri, possiamo considerarlo come candidato alla colonizzazione senza badare al fatto che si trovi o meno nella zona abitabile della sua stella.

 eso8 exocity3La colonizzabilità di un pianeta accessibile e dotato di un buon gradiente termico, può essere valutata in funzione di quanto la sua composizione si avvicini alla composizione della Demandite industriale e biologica. Probabilmente dovremo diventare molto accurati nella determinazione di tali valori. Questo, e non l’abitabilità, è il giusto modo di valutare quali mondi dovremmo desiderare visitare.

 Ricapitolando, propongo che venga aggiunto un secondo criterio di misura oltre alla già esistente scala di abitabilità nello studio degli esopianeti. L’abitabilità di un pianeta non ci dice nulla in merito al grado di attrazione che potrebbe avere sui visitatori. Colonizzabilità è la metrica perduta per giudicare il valore dei pianeti extrasolari.

Traduzione di ROBERTO FLAIBANI

 

Titolo originale :”A tale of two worlds: habitable, or colonizable?” di Karl Schroeder, pubblicato su Karl Schroeder’s Blog il 18 febbraio 2013

12 ottobre 2015 Posted by | Astrofisica, Astronautica, Scienze dello Spazio | , , , | Lascia un commento

WFIRST – una visione più ampia

WFIRST1La NASA sta lavorando alacremente alla preparazione del lancio nel 2018 del telescopio spaziale James Webb (JWST), successore dell’onorato telescopio spaziale Hubble (HST), che ha celebrato il suo 25° compleanno in aprile. Guardando oltre a JWST, la NASA ha indicato in WFIRST (Wide Field Infrared Survey Telescope) il suo prossimo e ambizioso telescopio spaziale di punta.

Se nel 2016 verrà approvato, WFIRST potrà essere pronto per il lancio nel 2024, in una missione per studiare l’energia oscura, eseguire ampie osservazioni nell’infrarosso della galassia e del cielo extragalattico, rivoluzionare la nostra conoscenza della demografia dei sistemi planetari e fare un grande passo in avanti nella tecnologia necessaria alla scoperta e allo studio di un altro “pianeta azzurro” intorno ad una stella vicina.

L’origine di WFIRST

WFIRST è nato nel corso dell’indagine che l’Osservatorio Decennale di Astronomia ed Astrofisica del Consiglio Nazionale per la Ricerca ha svolto nel 2010, un evento che ha luogo ogni dieci anni in cui la comunità astrofisica statunitense studia i concept di missione e le questioni scientifiche fondamentali, per poi emanare raccomandazioni alle diverse agenzie governative che supportano la ricerca astrofisica (la NASA, la National Science Foundation e il Dipartimento dell’Energia).

Tre delle più affascinanti proposte presentate per la valutazione avevano obiettivi scientifici molto diversi ma analogie nelle implementazioni del loro hardware, quali uno specchio primario di circa 1,3 metri di diametro e una grande camera ad infrarosso. Il Decadal Survey concluse che gli obiettivi scientifici delle tre proposte potevano essere realizzati da un unico telescopio spaziale. Fu dunque raccomandato che, per quanto riguardava i grandi progetti astronomici spaziali (superiori a 1 miliardo di dollari), la NASA perseguisse prioritariamente questa missione.

Alla fine del 2010 l’agenzia aveva dunque riunito un gruppo di scienziati e ingegneri allo scopo di iniziare la programmazione di WFIRST. Mentre il team iniziava a elaborare il progetto dettagliato del telescopio, in un’altra sezione dell’Agenzia si stavano svolgendo negoziati che promettevano di cambiare profondamente la configurazione di WFIRST. Infatti, agli inizi del 2011 il National Reconnaissance Office (NRO), un’agenzia di ricerca statunitense, donò alla NASA due telescopi spaziali inutilizzati che erano stati costruiti una decina di anni prima, ma che non erano mai stati messi in orbita. Questi telescopi avanzati avevano specchi di 2,4 metri di diametro, la stessa dimensione dell’HST e quasi il doppio del diametro programmato inizialmente per WFIRST. La NASA accettò i telescopi ma non rivelò la loro esistenza al pubblico (nemmeno al team di WFIRST!) fino al giugno 2012. Quest’elevata tecnologia incrementò enormemente le capacità di WFIRST, permettendo un’area di raccolta della luce quattro volte più ampia di quella programmata e una capacità di risoluzione doppia. Il primo telescopio donato dall’NRO fu chiamato AFTA (Astrophysics Focused Telescope Assat) e l’incarnazione di WFIRST che utilizza questo gradito regalo viene spesso chiamato WFIRST-AFTA. Il secondo telescopio sarà messo da parte fino a quando la NASA non troverà un’altra applicazione idonea e il finanziamento necessario per utilizzarlo al meglio.

wfirstesopianetiUN TELESCOPIO AVANZATO, QUATTRO OBIETTIVI

Considerati i 25 anni di servizio dell’HST, ci si potrebbe chiedere quale sia il vantaggio di un altro telescopio spaziale delle stesse dimensioni. La risposta sta nell’incredibile campo visivo di WFIRST, ovvero quanta parte di cielo può vedere in una sola volta. Per le lunghezze d’onda vicine all’infrarosso, che sono scientificamente interessanti ma relativamente difficili da osservare utilizzando telescopi terrestri, HST ha una camera da 1 megapixel, ma WFIRST avrà uno schieramento di sensori che lo porteranno ad un colossale 288 megapixel! Nei suoi 25 anni HST ha osservato alcune decine di gradi quadrati di cielo (sugli oltre 40.000 gradi quadrati di cielo); WFIRST, invece, sarà in grado di scrutare migliaia di gradi quadrati all’anno. Sebbene JWST, successore dell’HST, avrà uno specchio molto più grande (6,5 metri), il suo campo visivo rimarrà simile a quello dell’HST, mentre quello, davvero stupefacente, di WFIRST lo porterà ad osservare ampie aree di cielo, un requisito indispensabile per tre dei suoi quattro obiettivi fondamentali.

Primo obiettivo : comprendere l’energia oscura

Nel 1998 due squadre di astronomi scoprirono contemporaneamente che l’espansione dell’universo sta accelerando, invece che rallentare come si pensava in precedenza. La scoperta di questa espansione accelerata fece loro guadagnare il Premio Nobel per la fisica 2011 a pari merito. “Energia oscura” è il nome onnicomprensivo che gli scienziati danno a qualunque forza o proprietà dello spazio-tempo stia causando l’accelerazione dell’espansione. Mentre conosciamo molto poco riguardo a questa misteriosa energia oscura, gli astronomi ora ritengono che possa essere la componente prevalente del rapporto totale massa/energia dell’universo.

WFIRST userà tre tecniche per studiare gli effetti dell’energia oscura. La prima consiste nell’esaminare le esplosioni stellari, o supernovae, che oscurano per breve tempo la luce dei circa 100 miliardi di altre stelle nelle loro galassie ospiti. Studiando queste esplosioni, possiamo vedere attraverso grandi distanze: in pratica, scrutando indietro per due terzi del percorso verso il Big Bang, possiamo vedere come l’universo si sia espanso sotto l’influenza dell’energia oscura. WFIRST esaminerà anche le posizioni delle galassie nello spazio, dal momento che l’energia oscura lascia una firma rivelatrice sul raggruppamento spaziale delle galassie. Infine, WFIRST utilizzerà l’effetto lente gravitazionale debole, in cui la presenza della materia curva il percorso della luce (un effetto molto simile al microlensing). La lente debole si riferisce alle piccole distorsioni nelle forme di galassie lontane causate dalla massa presente tra noi e quelle galassie, dandoci informazioni sulla massa stessa e sugli effetti che ha su di essa l’energia oscura.

wfirstgalassieSecondo obiettivo: osservazioni del cielo nell’infrarosso

Le prime notizie di stampa riguardanti WFIRST si sono focalizzate soprattutto sull’energia oscura che, se pur entusiasmante, è solo una delle aree in cui si prevede che WFIRST avrà un forte impatto. WFIRST terrà da parte un anno e mezzo di tempo a disposizione di osservatori ospiti. Astronomi di tutto il globo, in competizione fra loro, potranno richiedere del tempo su WFIRST per utilizzare le sue capacità uniche di osservare il cielo nell’infrarosso. Gli esperti valuteranno le richieste e assegneranno il tempo per eseguire le osservazioni più interessanti dal punto di vista scientifico. Favorendo l’implementazione delle idee migliori, WFIRST potrà offrire dei grandi contributi in diverse aree dell’astronomia.

Terzo obiettivo: ricerca di pianeti extra-solari

Il terzo e il quarto aspetto di WFIRST si riferiscono allo studio dei pianeti extra-solari (più brevemente esopianeti). L’indagine di microlensing operato da WFIRST potrà rilevare oltre 2.000 pianeti, inclusi quelli analoghi ai pianeti del nostro sistema solare eccetto Mercurio, che è troppo vicino alla sua stella. WFIRST è complementare alla missione Kepler della NASA, destinata alla scoperta dei pianeti, in cui Kepler si è distinta nel trovare i pianeti caldi (quelli vicini alle loro stelle madri) mentre WFIRST eccelle nel trovare i pianeti freddi (quelli più lontani dalle loro stelle) e persino i cosidetti pianeti nomadi, che non orbitano intorno a nessuna stella. WFIRST completerà pertanto la rilevazione demografica dei pianeti nella nostra galassia iniziata da Kepler e ci dirà quanto siano comuni i diversi pianeti in tutti i loro gradi di dimensioni, temperature e distanze dalle stelle ospiti. Questo favorisce l’obiettivo a lungo termine della NASA di comprendere la frequenza dei pianeti nella zona abitabile, la regione intorno a una stella in cui è possibile la presenza di acqua liquida. Gli scienziati pensano che un pianeta delle dimensioni della Terra nella zona abitabile sia la nostra migliore scommessa per trovare la vita al di fuori del nostro sistema solare.

coronografoQuarto obiettivo: osservare gli esopianeti usando il coronografo

Il microlensing, che ci permette di individuare gli esopianeti ma non di vederli direttamente, era il livello di competenza che ci si aspettava da WFIRST per la scoperta degli esopianeti, secondo quanto previsto dalla Decadal Survey nel 2010. Tutto questo è emozionante, ma gli scienziati vorrebbero anche poter essere in grado di avere immagini dirette degli esopianeti per studiarli con maggiore dettaglio. Con la donazione dell’hardware di AFTA, questo è diventato possibile. Il telescopio AFTA, più grande, ha permesso alla NASA di aggiungere a WFIRST un coronografo, per consentire una rappresentazione diretta degli esopianeti più prossimi; fatto tecnicamente impegnativo, perché essi sono molto vicini alle stelle (secondo la scala astronomica) e molto meno luminosi della loro stella. Quindi un coronografo deve bloccare quanta più luce possibile dalla stella centrale, così da permettere agli altri strumenti di catturare quella, relativamente debole, proveniente dal pianeta. Il Decadal Survey ha messo lo sviluppo di una tale tecnologia in cima alle sue priorità per gli investimenti cosiddetti di “media entità” (centinaia di milioni di dollari) per l’astronomia spaziale. L’aggiunta di un coronografo a WFIRST permetterà che questa raccomandazione venga rispettata, non solo sviluppando la tecnologia in laboratorio ma anche facendola volare nello spazio. L’indice di contrasto previsto del coronografo WFIRST è un migliaio di volte superiore a qualsiasi cosa sia già stata realizzata – e negli ultimi due anni sono stati fatti dei grandi progressi nei test di laboratorio verso questo obiettivo. Se ci si riuscirà, grazie a WFIRST saremo in grado di rilevare direttamente pianeti della dimensione di Nettuno o più grandi.

RIPRENDERE LE IMMAGINI DI UN ALTRO PIANETA AZZURRO

Il coronografo di WFIRST è solo il punto di partenza verso una missione ancora più entusiasmante nel futuro. Se l’uso di un coronografo su WFIRST per riprendere immagini di esopianeti avrà successo, apriremo la strada ad una missione successiva con un telescopio e un coronografo più potenti. Una tale missione potrebbe essere in grado di riprendere immagini (e spettri) di pianeti delle dimensioni della Terra nella zona abitabile di stelle vicine. Questo ci permetterebbe di cercare la presenza di acqua e ossigeno – possibili segni di vita – nelle atmosfere di questi pianeti. WFIRST quindi rappresenterà un passo avanti verso la scoperta di un altro “pianeta azzurro” e la comprensione della presenza della vita nell’universo.

Traduzione di SIMONETTA ERCOLI

editing di DONATELLA LEVI

Titolo originale: ” A Wider View” by Jason Rhodes

JASON RHODES è un “cosmologo dell’osservazione” in forza al JPL della NASA, e sta lavorando per comprendere i misteri della materia e dell’energia oscure usando telescopi come WFIRST, oppure come Euclide dell’ESA. Quando non è impegnato a progettare missioni spaziali, dedica il suo tempo alla moglie Alina, sua collega cosmologa al JPL.

L’articolo è stato pubblicato per la prima volta da The Planetary Report 2015 v35, n.02

WFIRST

wfirst immagine

Galleria Immagini

wfirstmicrolensing1.

Come risultato dell’effetto di microlensing, la luminosità di una stella lontana misurata da un telescopio aumenta e poi diminuisce con il tempo (come si vede dalla curva rossa in alto), quando una stella e/o un pianeta ci passa davanti.

Che cosa è il microlensing gravitazionale?
Il
microlensing approfitta del fatto che la materia piega lo spazio e curva il percorso della luce, permettendo a corpi massivi di agire come lenti di ingrandimento. Riprendendo le immagini di molte migliaia di stelle nel nucleo centrale densamente popolato della galassia e misurandone la luminosità, possiamo aspettarci una sovrapposizione di una stella che funge da lente in primo piano su una stella sorgente sullo sfondo. La massa della stella lente ingrandisce l’immagine della stella sorgente passandovi davanti, proprio come farebbe una lente di vetro. Quando questo avviene, noi rileviamo un’apparente maggiore luminosità della stella. Contemporaneamente appaiono due immagini della stella sullo sfondo, troppo vicine tra loro perché noi le si possa distinguere (anche con WFIRST); comunque queste immagini non sono fondamentali per il processo di rilevamento. In qualche caso, la stella in primo piano avrà un pianeta e quel pianeta agirà brevemente come un’altra lente per la stella sorgente, causando una piccola, veloce anomalia nel lento cambiamento della “curva della luce”, o misura della luce totale raccolta dalla stella. Questa piccola anomalia indica la presenza del pianeta, e la relativa forma dell’anomalia, insieme con la curva totale della luce di microlensing, può darci informazioni sul rapporto tra le masse delle stelle ed il pianeta ed anche sulla distanza tra la stella lente ed il pianeta.

2.wfirst-kepler

Mentre la soda spaziale Kepler è molto più sensibile nel rintracciare i pianeti vicini alle loro stelle madri, WFIRST sarebbe molto più sensibile verso quelli lontani, come mostrato in questo diagramma della distanza dalla stella madre rispetto alla massa degli esopianeti. Le scoperte di pianeti stimate per Kepler sono mostrate come punti arancioni; i punti verdi sono le simulazioni delle future scoperte di WFIRST. Quest’ultimo sarà anche in grado di trovare pianeti non legati a stelle madri. I punti grigio scuro rappresentano esopianeti non rilevati da Kepler. Solo per gioco sono stati aggiunti la Terra e altri pianeti.

Screenshot 2015-09-27 10.303.

Questa simulazione di un’immagine ottenuta con un coronografo illustra come la schermatura della luce brillante di una stella permette l’osservazione della luce relativamente debole dei suoi due pianeti. La donazione dell’Astrophysics Focused Telescope Asset (AFTA) permette di aggiungere un coronografo a WFIRST, permettendo agli scienziati di andare alla ricerca di esopianeti nello spazio.

coronografo14.

un coronografo non è il solo modo per bloccare la luce di una stella in modo da consentire un’immagine diretta di un esopianeta. La NASA sta studiando dei concept per un’opzione esterna denominata starshade (ombrello stellare). Questa navicella a volo libero potrebbe essere manovrata posizionandola precisamente in modo da lasciare che la luce di un pianeta oltrepassi il suo bordo esterno, mentre la parte più interna blocca la luce della stella. I “petali” dello starshade creano un bordo più tenue che diminuirebbe la curvatura della luce. Per vedere un’animazione dell’apertura dello starshade, (qui in immagine), e anche un video del test di apertura del prototipo presso lo JPL, andare a planet.ly/starshade

28 settembre 2015 Posted by | Astrofisica, Astronautica, News, Planetologia, Scienze dello Spazio | , , , , , , , , | Lascia un commento

eso7. attribuire un nome

eso7 VenetiaC’era una volta …

Venetia Burney, una ragazzina di 11 anni, viveva a Oxford, nella casa del nonno Madan Falconer, ex-direttore della prestigiosa Bodleian Library. Quel giorno, il 14 marzo 1930, durante la prima colazione, Venetia stava raccontando ai commensali cosa aveva imparato nel corso della passeggiata virtuale attraverso il Sistema Solare organizzata dalla sua maestra nel parco dell’università il giorno prima. Ma il vocione del nonno interruppe le parole di Venetia: “Proprio a fagiolo!”, esclamò il vegliardo, dispiegando sul tavolo una copia del Times fresca di stampa, dove si annunciava la scoperta del nono pianeta del Sistema Solare e la necessità di attribuirgli un nome. Venetia, appassionata di mitologia greco-romana, colse l’attimo e disse forte e chiaro: “Perché non lo chiamano Plutone? Il dio degli Inferi vive nell’oscurità e indossa un elmo che lo rende invisibile: ciò spiegherebbe il fatto che ci son voluti 84 anni per scoprirlo”. Al colmo dell’entusiasmo nonno Madan si precipitò dal suo buon amico Herbert Turner, ex Astronomo Reale, per mettere in moto la procedura che il primo maggio successivo impose il nome Plutone al nuovo pianeta.

eso7 - zombi planet

Migliaia di candidati

Quasi un secolo dopo quegli avvenimenti, la comunità scientifica è in subbuglio di fronte a un problema analogo, ma di dimensioni molto maggiori: dare un nome alle migliaia di esopianeti che sono stati scoperti negli ultimi 20 anni, stabilendo regole chiare e univoche. Il primo passo è stata la conferma dell’Unione Astronomica Internazionale (IAU) come unico organismo in grado di gestire tale operazione. L’IAU, una ONG costituita da un grande numero di astronomi professionisti, ha quindi annunciato la creazione del concorso NameExoWorlds, da tenersi entro la fine di ottrobre 2015, dove, dopo aver vagliato un gruppo di 305 tra stelle ed esopianeti scoperti prima del 31 dicembe 2008, a 15 stelle e 32 esopianeti verrà assegnato un nome che figurerà accanto alle loro designazioni alfanumeriche nel catalogo ufficiale. Il nuovo regolamento prevede che le associazioni e i club di astrofili, debitamente registrati, si occupino di proporre rose di nomi candidati, e che l’accesso al voto sia consentito a chiunque, una volta installati opportuni algoritmi che impediscano, dallo stesso computer, di inoltrare più di un voto per ogni corpo celeste candidato. Sarà solo l’inizio, perché la lista d’attesa è già pronta e conta, per il momento, oltre 2000 candidati, solo tra gli esopianeti, che saranno presi in considerazione nei prossimi concorsi.

eso7 Epsilon_Eridani_bTutti hanno diritto al voto

Sempre che tutto vada bene. Infatti la temperatura tra IAU e Uwingu, una società che offre servizi di denominazione, nella fattispecie nomi per gli esopianeti e i crateri di Marte, stava arrivando al calor bianco. La querelle era esplosa nel 2006, nel bel mezzo della tempesta scoppiata per la retrocessione di Plutone a pianeta nano, ad opera dell’IAU. La decisione era stata contestata, con varie motivazioni, da un gruppo eterogeneo di space enthusiasts e di ricercatori, tra i quali anche Alan Stern, Principal Investigator della missione New Horizons. La contestazione si era estesa in un lampo a tutta l’attività della IAU, puntando principalmente sulla durezza del regolamento delle denominazioni, considerato troppo restrittivo. La Uwingu, da parte sua, non scherzava: chiedeva 9,99 dollari per proporre un nome e 1000 voti da 0,99 dollari ciascuno per rendere quel nome eleggibile. In cambio dava un artistico certificato e nient’altro, e certamente non il riconoscimento della IAU. Alan Stern, circonfuso di gloria e all’apice della carriera dopo il flyby di Plutone, saprà condurre la sua Uwingu a un ragionevole compromesso con la IAU? Affari loro, intanto New Horizons fila veloce sempre più addentro alla Cintura di Kuiper, in cerca di nuove scoperte e nuovi corpi celesti a cui attribuire un nome.

Noi space enthusiasts non perderemo certo questa occasione per votare, sperando che sia la prima di molte altre.

di ROBERTO FLAIBANI  

 editing STEPHEN P. BIANCHINI

Le illustrazioni: (dall’alto verso il basso): Venetia Burney, Fomalhaut b (zombie planet), Epsilon Eridani b

FONTI:

  • To Play or not to Play The Exoplanet Name Game?”, by Lee Billings

    pubblicato da Scientific American il 14 agosto 2015

  • The Hunt for Planet X” by Govert Schilling

    Springer – 2007

Credits: NASA, JPL, CalTech, ESA, Hubble, Springer, G. Schilling

10 settembre 2015 Posted by | Astrofisica, Astronautica, News, Scienze dello Spazio | , , , , , | Lascia un commento

%d blogger hanno fatto clic su Mi Piace per questo: