Il Tredicesimo Cavaliere

Scienze dello Spazio e altre storie

Storie nelle rocce (reblog)

Nella sua versione in lingua inglese, l’articolo che segue non solo ha fatto la gioia dei geologi e dei planetologi, ma ha raccolto anche parecchio interesse tra il pubblico non specializzato. E’ stato scritto da Barbara Cohen e tradotto in italiano, con molta cura,  da Simonetta Ercoli e Donatella Levi. E’ stato pubblicato sul Tredicesimo Cavaliere proprio nei caldissimi giorni a ridosso del Ferragosto, col risultato di passare inosservato alla maggioranza dei nostri lettori. Lo riproponiamo qui ora come un gesto di scusa nei confronti dell’autore e dei traduttori e ci auguriamo che questa volta l’articolo riesca a raggiungere l’intero suo pubblico. (RF)

La storia di un pianeta è raccontata attraverso le sue rocce. Ogni roccia che si forma memorizza il suo ambiente: la dimensione dei granuli di un sedimento ci dicono da quanto lontano le particelle sono state trasportate; le tracce degli elementi nelle rocce ignee quale era la provenienza del magma; la composizione mineralogica di una roccia metamorfica quale intensità di pressione ha subito. Una roccia ci mostra se una zona era umida o secca; se i fluidi percolati attraverso di essa erano caldi o freddi e se la superficie era stata alterata da fratture da impatto o corrugamenti tettonici.

Rocce1

foto 1. L’immagine è una sezione sottile di Dhofar 025, una meteorite lunare con vescicole da fusione da impatto. È stata scattata utilizzando gli elettroni retrodiffusi in microscopio a scansione elettronica. Qui i grigi medi e scuri indicano gli elementi più leggeri che costituiscono le rocce e i minerali tipici, mentre il bianco brillante sta ad indicare elementi più pesanti, come i metalli, e le aree nere sono fori o spazi vuoti. L’inserto è uno zoom su un clasto da fusione da impatto in questa meteorite – un pezzetto di una sola roccia formata da molti cristalli di minerali che si sono accresciuti, avendo fuso e ricristallizzato in un impatto sulla Luna.

Ogni roccia è una pagina nel libro della storia di un pianeta: la geocronologia è ciò che mette in ordine le pagine. Studia l’età le rocce e quando esse sono state modificate dagli eventi geologici. Noi conosciamo le condizioni in cui le rocce si formano grazie agli strumenti presenti sui nostri rover, quali Opportunity e Curiosity, e sugli orbiter come l’Orbiter Lunar Reconnaissance, Messenger e Cassini. La geocronologia è una misurazione aggiuntiva, che mette quelle condizioni in un contesto temporale: ci aiuta a ordinare cronologicamente gli eventi planetari e a collegarli ad altri verificatisi nel Sistema Solare.

Per esempio, che cosa stava accadendo sulla Terra quando su Marte il clima cambiava da caldo e umido al suo inospitale stato attuale? Quando hanno colpito Marte e la Luna gli impatti degli asteroidi? La geocronologia può dirci anche quanto a lungo è durato un evento. Per quanto tempo, ad esempio, i diversi pianeti hanno avuto un calore interno sufficiente a regolare i sistemi magmatici? E quanto tempo hanno avuto gli organismi per crescere in un ambiente marziano caldo e umido? Quanto a lungo le superfici sono state esposte all’ambiente dello spazio e forse trasformate da esso?

rocce2

foto 2. Questa sezione sottile ingrandita (QUE 94200) è una howardite, un esempio della regolite di Vesta. Proviene da un gruppo di meteoriti collegate a Vesta chiamate HED (howardite, eucrite, diogenite). Questo campione contiene piccoli pezzi di materiale fuso da impatto dei crateri di Vesta. Tuttavia, dal momento che non conosciamo esattamente in quale punto dell’asteroide si siano formati queste meteoriti, non possiamo ancora collegare l’età assoluta dei campioni all’elenco dei crateri sulla sua superficie.

 

 

Campioni in laboratorio

Io mi descrivo come una persona campione. Amo mettere le mani sulle rocce degli altri pianeti – campioni lunari dell’Apollo, meteoriti dalle diverse parti del mondo – aprirli e analizzarli per scoprire come e dove si sono formati. Ho iniziato ad imparare diverse tecniche di laboratorio mentre ero una studentessa specializzanda in geologia all’università statale di New York a Stoney Brook, uno dei primi posti in cui sono stati analizzati i campioni riportati dalla missione Apollo negli anni ‘70. Quando ero iscritta alla facoltà dell’Università dell’Arizona per approfondire le scienze planetarie, sviluppai un progetto usando la geocronologia per datare piccolissime vescicole di fusione da impatto, che si erano conservate nelle meteoriti lunari. Tutti i campioni riportati dalle missioni Apollo, che si sono formati in ampi impatti sulla Luna, hanno stranamente un’età simile, circa 4 miliardi di anni, che alcuni addetti ai lavori hanno iniziato a spiegare con l’incremento dei bombardamenti subiti dalla Luna in quel periodo: bombardamenti ai quali la Terra non poteva essere sfuggita. Quando stavo preparando la mia tesi, pensavo che avrei trovato di sicuro rocce da fusione da impatto più vecchie e avrei risolto il mistero. In realtà, non trovai nulla di più vecchio di 4 miliardi di anni in nessuno dei miei campioni. Era più difficile di quanto pensassi. 

rocce5foto 5. La stratigrafia si usa per comprendere l’età relativa delle rocce. Come mostrato dagli strati differentemente colorati del Gran Canyon, le rocce più giovani sono sovrapposte a quelle più antiche. Per conoscere la loro età assoluta è necessario analizzarle in laboratorio.

Quando non abbiamo campioni da scegliere in laboratorio, come possiamo stabilire quanto è vecchio un pianeta? Usiamo la datazione relativa. Gli elementi rocciosi più vecchi si trovano al di sotto di quelli più giovani: questo è il principio della stratigrafia, che si può vedere in luoghi come il Gran Canyon. Quando si hanno solo immagini orbitali, è più difficile vedere gli strati sovrapposti gli uni sugli altri, ma possiamo ricorrere a formazioni, quali le colate di lava e i crateri da impatto, per distinguere le aeree più recenti da quelle più antiche. I crateri da impatto, infatti, sono molto utili perché, fin dal pesante bombardamento di quattro miliardi di anni fa, sembrano formarsi ad un ritmo costante. Questo significa che il numero dei crateri sulla superficie può essere collegato alla sua età, come lasciare un pezzo di carta fuori appena comincia a piovere. Ma come possiamo dire quanti crateri corrispondono a quale età? Abbiamo bisogno di un punto di collegamento o di un’età assoluta. Sulla Luna gli astronauti dell’Apollo hanno raccolto campioni dalle zone vicine ai flussi di lava. Li abbiamo datati per dare loro un’età, poi abbiamo contato i crateri sulla superficie delle colate di lava e creato una scala temporale calibrata della Luna. Ora potremmo contare i crateri presenti sulle parti della Luna che non sono state esplorate, e utilizzare le loro relazioni, determinate con i campioni Apollo, per dedurre l’età della superficie. E ancora, possiamo usare questa calibratura per estendere il conteggio dei crateri ad altri pianeti come Marte per stimare l’età della superficie del pianeta, sebbene ci siano molte imprecisioni quando si usa questo metodo.

 rocce3

foto 3. questa fila di crateri da impatto, fotografata da Dawn, è una delle più suggestive formazioni sul grande asteroide Vesta. Questi ed altri impatti su Vesta hanno fatto ribollire la sua superficie, creando la regolite.

 

 

 

 

 

Campionatura in situ

Nel 2004 facevo parte di una commissione che consigliò la NASA su cosa sarebbe importante fare per la scienza lunare quando l’uomo tornerà sulla Luna. “Il contesto scientifico per l’esplorazione della Luna” era il titolo del nostro report. La commissione concordò nel ritenere che l’antico bombardamento della Luna – il periodo in cui gli enormi bacini lunari, quali Imbrium e Orientale, si formarono – era un’enorme questione in sospeso con implicazioni importanti per l’intero Sistema Solare. Noi sostenevamo l’importanza della raccolta di più campioni presi da diversi luoghi sulla Luna, non solo dalle vicinanze delle aree visitate dalle missioni Apollo: abbiamo bisogno di campioni prelevati da molti siti. Per esempio, il ritorno di campioni da Marte è un obiettivo di vecchia data della comunità scientifica che si occupa dei pianeti. Le meteoriti cadute sulla Terra ci raccontano quando i loro corpi di origine si sono formati ed evoluti, ma dove sono i loro corpi di origine? È necessario ottenere anche campioni di molti asteroidi. E quando si sono formate la liscia superficie di Venere leggermente craterizzata e la crosta povera di ferro di Mercurio? Riportare campioni da tutti questi posti? Chiaramente, non è possibile. Ma ho imparato un altro approccio alla campionatura, quando Paul Lucey, il mio collega di studi di scienze lunari e membro della commissione, mi pose delle domande riguardo a una geocronologia in situ, vale a dire spostare il nostro laboratorio nello spazio, invece di portare indietro i campioni. Io ridicolizzai l’idea. Gli risposi che servono camere pulite per la preparazione e manipolazione dei campioni, al fine di garantire la sensibilità degli strumenti, che occupano una metà della stanza, per un calcolo dell’età preciso fino a milioni di anni in minuscoli granelli di campioni vecchi miliardi di anni.

rocce4

foto 4. la maggior parte degli scienziati concorda nel ritenere ALH84001 la più antica meteorite di Marte mai rinvenuta. Questo pezzo del pianeta rosso cristallizzò 4,51 miliardi di anni fa. Mezzo miliardo di anni dopo è stato colpito da un forte evento di impatto. Noi non sappiamo dove si fosse originata la meteorite su Marte così non possiamo collegare la sua età ad uno dei crateri marziani.

Paul scosse la testa con disappunto e disse: “Veramente? Non riesci a pensare ad una sola domanda tra tutte quelle della scienza planetaria che possa richiedere un’età leggermente meno precisa?” Mi soffermai a pensare. Bene, noi non conosciamo l’età degli altopiani marziani all’interno di circa un mezzo miliardo di anni, che è un raggio ampio. Se potessimo restringere quello spazio fino a 100 milioni di anni, sarebbe sufficiente per legarlo alla storia lunare. I giovani basalti lunari, i crateri chiave sulla Luna, Marte e Vesta, l’età magmatica di asteroidi differenziati potrebbero essere tutti studi orientati ad un primo approccio con un’idea come questa.

Tempo e decadimento

I nostri metodi di datazione assoluta si basano sul decadimento radioattivo. Ogni elemento della tavola periodica ha un determinato numero di protoni ed elettroni, che lo identificano: per esempio, il carbonio ha sei protoni e sei elettroni. Tutti gli atomi hanno anche neutroni nei loro nuclei e questi possono variare di numero. Atomi che hanno lo stesso numero di protoni ma differente numero di neutroni sono detti isotopi tra loro. Così un atomo di carbonio con sei neutroni è 12C e uno con sette neutroni è 13C. Molti elementi hanno isotopi radioattivi naturali, in essi gli atomi madre decadono con il tempo in atomi figli più stabili. Questo tempo di decadimento è ormai noto, così conoscendo l’atomo di partenza e quello di arrivo, è possibile definire per quanto tempo il sistema è stato in decadimento o per le rocce il tempo per la loro formazione. Io uso un sistema radioattivo basato sul potassio (K) che decade ad argon (Ar). Il potassio è un elemento presente naturalmente nella vita di ogni giorno, ad esempio si trova nelle banane e nel granito. In realtà un numero veramente esiguo di atomi di potassio ha un numero extra di neutroni ed è quindi radioattivo. Quando esso si trova in un minerale o in una roccia, fa parte del loro reticolo, quindi possiamo valutare il potassio di partenza e l’argon di arrivo per conoscere in quanto tempo quest’ultimo si è formato, ovvero l’età della roccia. Con un’emi-vita di 1,29 miliardi di anni il sistema potassio-argon è un valido metodo per l’analisi delle rocce del sistema solare ed è stato utilizzato sia per le rocce lunari e le meteoriti che per le rocce terrestri.

 

rocce6

foto 6. il Mare della Serenità è uno dei mari lunari, vaste pianure di lava sulla superficie della Luna. Questa una ripresa della Stazione 6, dove gli astronauti dell’Apollo 17 hanno esplorato un gruppo di massi e regolite, fatta dalla camera del Lunar Reconnaissance Orbiter (LROC). Cinque ampi frammenti di roccia giacciono alla base di un lungo cordolo di massi. Provengono tutti da un singolo masso che è rotolato giù dal rilievo e si è frammentato in più parti.

 

 

L’esperimento laser potassio-argon

Il mio consulente di laurea è stato Tim Swindle, il quale provò per primo a sviluppare un sistema potassio-argon da utilizzare in un volo strumentale. Tim chiamò il suo metodo Argon Geochronology Experiment (AGE) e lo destinò a volare su una missione verso Marte. AGE utilizzava un laser (come il Chemcam su Curiosity) per misurare il potassio in piccoli campioni, poi lo fondeva in forno a 1.500 °C (2.730 Fahreneit) per liberare l’argon intrappolato. Io ero una collaboratrice nei programmi di Tim. In una conversazione con lui ad un convegno nel 2008 presso l’Ames Research Center della NASA, riflettei che l’alta energia del laser poteva rompere il reticolo cristallino e produrre argon libero senza il bisogno di un forno. Chiesi a Tim se gli sarebbe interessato provare questo metodo ma, spiegandomi che egli era al termine della concessione del suo progetto e stava prendendo altre responsabilità, suggerì che io tentassi da sola. Ci scambiammo i ruoli e io iniziai a sviluppare il Potassio Laser Experiment (KArLE) con Tim come collaboratore. Dato che sono una scienziata e non una tecnologa, ho progettato KArLE seguendo il criterio di adoperare strumenti che già esistono per le missioni sulle superfici planetarie, utilizzandoli per condurre un nuovo tipo di rilevazione: l’età delle rocce. KArLE usa uno strumento come il Chemcam sia per ablare un campione di roccia sia per misurare il potassio nel plasma, utilizzando la spettroscopia di ripartizione indotta da laser (LIBS). Come la roccia si rompe, noi misuriamo l’argon liberato con la spettrometria di massa, allo stesso modo in cui viene fatto in alcune missioni quali Curiosity, LADEE e Cassini. Abbiamo avuto circa tre anni di tempo per sviluppare una versione KArLE da laboratorio e testarla in analoghi campioni planetari con risultati incoraggianti, dal momento che abbiamo ottenuto datazioni accurate con circa solo un 10 – 15 percento di imprecisione: un livello di precisione ottimo per rispondere a molte domande sollevate dalla scienza planetaria. Possiamo fare buone misurazioni di potassio e argon, ma ogni datazione è l’interpretazione di un evento geologico, così ogni componente KArLE contribuisce a rendere la misurazione contestuale per interpretare l’età del campione. Per esempio la tessitura della superficie di una roccia è caratterizzata con un dispositivo elettronico (imager), LIBS produce un’analisi completa degli elementi della roccia e tutti i gas liberati possono essere misurati. Pensavo di essere stata piuttosto in gamba a riconvertire questi componenti e il loro uso verso la geocronologia. Ma una buona idea a volte sta solo aspettando di essere pensata e così, del tutto indipendentemente, anche altri due gruppi, in Germania e in Francia, stavano sviluppando questa tecnica quasi contemporaneamente a noi. Fortunatamente negli ultimi anni siamo arrivati a considerarci come persone che collaborano fra loro, lavorando tutte verso un obiettivo comune.

rocce7

foto 7. pezzi di colata di lava tratti dal Mare della Serenità sono stati riportati sulla Terra e datati nei laboratori, dove una datazione assoluta per la formazione lavica è stata valutata tra 3,7 e 3,8 miliardi di anni. Questo è un pezzo del basalto riportato dall’Apollo 17 che ha fornito questa età, collegandola al conteggio dei crateri dalla foto 6.

Opportunità per la datazione in situ

La capacità degli strumenti di volo di condurre la geocronologia in situ è ritenuta dalle pubblicazioni della NASA Planetary Science Decadal Survey e Technology Roadmap come uno sviluppo necessario per soddisfare i bisogni della comunità. Beagle 2, il lander esobiologico per l’orbiter Mars Express dell’ESA, è la sola missione lanciata con l’esplicito obiettivo di effettuare in situ la datazione K-Ar delle rocce. Sfortunatamente il lander Beagle 2 ha mancato la comunicazione al suo primo atteso contatto radio e questo obiettivo scientifico non è stato così soddisfatto. La prima datazione K-Ar in situ su Marte è stata pubblicata di recente, utilizzando misurazioni SAM e APXS su rocce Cumberland mudstone. L’età di 4,21 miliardi di anni (+-0,35) per Cumberland suggerisce che essa è di età molto antica e valida l’ipotesi dell’uso del sistema potassio-argon per la datazione sugli altri pianeti, anche se il metodo Curiosity è molto impreciso. Per ottenere maggior precisione e datazioni più significative, molti gruppi stanno perfezionando strumenti destinati alla datazione in situ. L’ultima opportunità per uno strumento di tale tipo è avvenuta lo scorso anno, quando il carico di Mars 2020 è stato completato. Quattro strumenti potassio-argon per la datazione in situ e altri schemi di datazione radioattiva sono stati proposti, tra cui KArLE. Benché nessuno abbia vinto un posto sul rover Mars 2020, la datazione in situ potrebbe presto divenire una realtà.

Ci sono molte domande relative alla scienza planetaria che ancora richiedono la determinazione di misurazioni di laboratorio e necessitano di campioni da riportare indietro sulla Terra. La datazione in situ non sostituisce il lavoro sui campioni riportati, ma piuttosto estende la nostra capacità di usarla come uno strumento, insieme ai nostri strumenti di imaging. Vorrei che diventasse uno strumento comune da poter utilizzare sulla Luna, su Marte, sugli asteroidi e oltre. Non sarebbe romantico avere un appuntamento in tutti quei posti?

traduzione: SIMONETTA ERCOLI

editing: DONATELLA LEVI

Titolo originale: “Stories in Stone” di Barbara Cohen , pubblicato su The Planetary Report vol35 #1-2015

2 ottobre 2015 - Posted by | Planetologia, Scienze dello Spazio | , ,

Non c'è ancora nessun commento.

Lascia un commento

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...

%d blogger cliccano Mi Piace per questo: