Il Tredicesimo Cavaliere

Scienze dello Spazio e altre storie

Acqua, acqua, ovunque

La nostra visione del Sistema Solare è completamente cambiata negli ultimi cinquant’anni. Ditelo a una festa, e chi vi ascolta darà per scontato che vi stiate riferendo a Plutone, il cui declassamento ha provocato più reazioni di qualsiasi altra recente notizia sui pianeti.Ma in aggiunta a tutto quello che abbiamo appreso dalle sonde, la nostra visione del Sistema Solare composto da un piccolo numero di pianeti, ora comprende un enorme numero di oggetti a immense distanze. Cinquant’anni fa , una Cintura di Kuiper di gran lunga più popolata della fascia principale degli asteroidi era solo teoria. E i primi modelli dl Sistema Solare con i quali sono cresciuto non includevano mai nessuna rappresentazione di una immensa nuvola di comete (ndt: la Nube di Oort), che si estendeva fino a cinquantamila Unità Astronomiche di distanza.

Abbiamo anche cominciato a capire che l’acqua allo stato liquido, una volta considerata esclusiva della Terra, potrebbe abbondare in tutto il Sistema. Caleb Scharf si occupa dell’argomento in un recente articolo apparso su Life Unbounded, prendendo nota di cosa i nostri modelli teorici ci dicono sulla presenza di oceani interni in svariati oggetti celesti.

Si può fare molto con modelli puramente teorici che cercano di determinare il giusto equilibrio idrostatico tra il peso di un corpo celeste e le sue forze di pressione interne, sia che siano esercitate in stato gassoso, solido o liquido: energia termica proveniente dalla formazione dei corpi stessi, calore generato dal decadimento radoattivo di isotopi d’origine naturale, tutto gioca un ruolo. Basta inserire qualche dato reale, per esempio misurazioni inerenti a luoghi come Europa o Titano, perché i nostri modelli diventino molto meglio calibrati. L’aspetto intrigante è che si può giocare variando la composizione e la stratificazione interna del materiale di un corpo planetario per trovare la combinazione che funziona meglio. Di conseguenza si può fare una stima della natura e dell’estensione di qualsiasi zona di acqua allo stato liquido situata sotto la superfice.

Scoprire oceani interni

I dati diventano impressionanti, come dimostrano Hauke Hussmann e colleghi in un testo del 2006 apparso sulla rivista Icarus. Si inizia con Galileo, la missione verso Giove che ha riportato dati sufficienti per cambiare la nostra visione delle lune del pianeta gigante. Galileo ha scoperto campi magnetici secondari indotti nelle vicinanze di Europa, Callisto e Ganimede, fornendo consistenti prove sperimentali a sostegno dell’ipotesi che esistano oceani sotto le loro superfici. Si pensa che tali campi siano generati da ioni contenuti in uno strato d’acqua allo stato liquido presente sotto la crosta ghiacciata esterna. Indubbiamente Europa è diventata un obiettivo primario per una futura ricerca di astrobiologia, grazie alla prospettiva di trovare, oltre all’acqua, anche una crosta di ghiaccio sottile.

L’articolo di Hussmann prosegue calcolando i modelli di strutture interne per corpi celesti ghiacciati di medie dimensioni nel Sistema Solare esterno, supponendo come acquisito l’equilibrio termico tra calore di origine radioattiva prodotto dal nucleo e la perdita di calore attraverso la crosta di ghiaccio. Ora possiamo davvero cominciare a espandere il quadro. Il testo dimostra che l’esistenza di oceani sotto la superficie è plausibile non solo nel caso, ora ovvio, di Europa, ma anche di Rhea, Titania, Oberon, Tritone e Plutone. Un esempio può essere costituito anche dagli oggetti trans-nettuniani (TNO) 2003-UB313, Sedna e 2004-DW. Hussmann dice:

Nei corpi celesti qui in discussione, gli strati liquidi sono in diretto contatto con i nuclei rocciosi. Ciò contrasta con gli oceani interni nei grandi satelliti ghiacciati come Ganimede, Callisto o Titano, dove essi sono racchiusi tra una crosta di ghiaccio comune sopra e da strati di ghiaccio supercompressi sotto. Il contatto tra l’acqua e i silicati permetterebbe uno scambio molto efficace di minerali e sali tra le rocce e l’oceano nelle zone interne di questi satellti di medie dimensioni.

E’ interessante notare che Encelado, come risulta dai continui esami a cui è sottoposto dalla sonda Cassini, non si accorda col modello Hussmann. Nel documento si segnala infatti che sorgenti di calore diverse da quella originata dal decadimento radioattivo servirebbero per sostenere un tale oceano, con l’ovvia opzione rappresentata dal calore sviluppato dalle maree. Abbiamo molto da imparare su Encelado: il testo affronta argomenti come la storia della sua orbita, e fa paragoni con Mimas, dove la forza della marea è molto più intensa. Ma le conclusioni sono chiare: abbiamo necessità di una maggior mole di osservazioni per chiarire se gli oceani interni sono o meno un fenomeno comune nel Sistema, tra le lune e i corpi celesti ghiacciati come gli oggetti trans-nettuniani.

Oceani oscuri e lontani

Hussmann e colleghi partono dall’assunto che i bacini sotterranei in questi mondi esterni si trovino sotto una crosta di ghiaccio spessa oltre 100 chilometri, abbastanza perchè ci sia poco collegamento tra tali bacini e le caratteristiche di superficie. Ma lo studio dell’interazione tra questi oceani e i campi magnetici e le particelle cariche che li circondano, e le reazioni dei corpi celesti alle maree esercitate dal corpo primario (ndt: uno dei pianeti esterni, nel nostro caso), possono aiutarci a confermare o smentire l’esistenza degli oceani stessi. Qui c’è lavoro per generazioni di sonde spaziali, ma se azzecchiamo il modello giusto fin dall’inizio, allora potremo fare ragionevoli estrapolazioni a proposito dell’onnipresenza dell’acqua.

Il modello proposto nel documento, dicono gli autori, non è applicabile a Ganimede, Callisto e Titano, ma vedo che nel suo articolo Scharf afferma che Titano potrebbe avere un volume di acque dieci volte superiore a quello degli oceani terrestri. Questi sono i dati che contano. Come dice Scharf:…”questi corpi celesti da soli potrebbero fornire una quantità d’acqua allo stato liquido da dieci a sedici volte maggiore di quella presente sulla Terra.” Mettiamo nel conto anche gli oggetti trans – nettuniani, aggiungiamo la possibilità di un eventuale riscaldamento d’origine radioattiva, e otterremo quanto meno l’eventualità che i TNO siano la più estesa sorgente di acqua allo stato liquido dell’intero Sistema Solare.

Non avevamo forse detto che la nostra visione del Sistema era cambiata? Questa rivoluzione continua non appena ci addentriamo nella Cintura di Kuiper. Speriamo che la sonda New Horizons scopra un piccolo TNO da studiare, nel corso del suo viaggio oltre Plutone e Caronte, ma forse potremmo sperare nel lancio di sonde destinate a orbitare intorno ai satelliti dei pianeti esterni o ad altri oggetti, aiutandoci a comprenderne la composizione interna. Se si avvalora la prospettiva che esistano bacini d’acqua interni nelle proporzioni indicate precedentemente, allora tutta la Cintura di Kuiper avrebbe un seppur minimo potenziale astrobiologico.

Titolo originale:“Water, Water, Everywhere” scritto da Paul Gilster e pubblicato in Centauri Dreams il 18 febbraio 2011. Traduzione italiana di Roberto Flaibani, editing di Beatrice Parisi. Le illustrazioni riproducono alcune opere del pittore Giulio Corcos, che ringraziamo con simpatia. Questo articolo segna la nostra partecipazione al Carnevale della Chimica, terza edizione, e inaugura una fase di collaborazione con Centauri Dreams, che ci auguriamo lunga e fruttuosa.

Fonte: Hussmann et al., “Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects,” Icarus Vol. 185, Issue 1 (2006), p. 258-273.

Advertisements

21 marzo 2011 - Posted by | Carnevale della Chimica, Planetologia, Scienze dello Spazio | , , , , , , , ,

2 commenti »

  1. […] giocatore a caricare meno acqua al decollo e a fermarsi per fare rifornimento durante il viaggio. L’acqua nel Sistema Solare si trova su tanti pianeti e asteroidi, basta atterrare e, avendo sviluppato le adeguate tecnologie, […]

    Mi piace

    Pingback di HIGH FRONTIER: l’esplorazione simulata del Sistema Solare – Il tredicesimo cavaliere 2.0 | 19 aprile 2016 | Rispondi

  2. […] noi Roberto ha preparato una storia spaziale dell’acqua, con acqua, acqua, ovunque ci porta in un viaggio interplanetario alla scoperta più recenti progressi compiuti nello […]

    Mi piace

    Pingback di Carnevale della Chimica #3 – L’acqua: una soluzione chimica! | Il chimico impertinente | 22 marzo 2011 | Rispondi


Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...

%d blogger hanno fatto clic su Mi Piace per questo: